Psychophysical Evidence for Long-Term Potentiation of C-Fiber and A -Fiber Pathways in Humans by Analysis of Pain Descriptors

نویسندگان

  • Niels Hansen
  • Thomas Klein
  • Walter Magerl
  • Rolf-Detlef Treede
چکیده

Hansen N, Klein T, Magerl W, and Treed R-D. Psychophysical evidence for long-term potentiation of C-fiber and A -fiber pathways in humans by analysis of pain descriptors. J Neurophysiol 97: 2559 –2563, 2007. First published January 10, 2007; doi:10.1152/jn.01125.2006. Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for 60 min, P 0.001), whereas affective pain descriptors were not significantly enhanced. Factor analysis of the sensory pain descriptors showed that facilitation was restricted to two factors characterized by hot and burning ( 41%) and piercing and stinging ( 21%, both P 0.01), whereas a factor represented by throbbing and beating was not significantly increased ( 9%, P 0.47). The increased perception of the burning pain quality for 1 h after HFS is interpreted as a LTP-like facilitation of the conditioned cutaneous C-fiber pathway. Additionally, the increase of the stinging pain quality supplied evidence for facilitation of a sharpness-sensitive A -fiber pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Psychophysical evidence for long-term potentiation of C-fiber and Adelta-fiber pathways in humans by analysis of pain descriptors.

Long-term potentiation of human pain perception (nociceptive LTP) to single electrical test stimuli was induced by high-frequency stimulation (HFS) of cutaneous nociceptive afferents. Numerical pain ratings and a list of sensory pain descriptors disclosed the same magnitude of nociceptive LTP (23% increase for >60 min, P < 0.001), whereas affective pain descriptors were not significantly enhanc...

متن کامل

Effects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity

Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Long-term potentiation at C-fibre synapses by low-level presynaptic activity in vivo

Inflammation, trauma or nerve injury trigger low-level activity in C-fibres and may cause long-lasting hyperalgesia. Long-term potentiation (LTP) at synapses of primary afferent C-fibres is considered to underlie some forms of hyperalgesia. In previous studies, high- but not low-frequency conditioning stimulation of C-fibres has, however, been used to induce LTP in pain pathways. Recently we co...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007