Conditions for the equivalence between IQC and graph separation stability results

نویسندگان

  • Joaquín Carrasco
  • Peter Seiler
چکیده

This paper provides a link between time-domain and frequency-domain stability results in the literature. Specifically, we focus on the comparison between stability results for a feedback interconnection of two nonlinear systems stated in terms of frequency-domain conditions. While the Integral Quadratic Constrain (IQC) theorem can cope with them via a homotopy argument for the Lurye problem, graph separation results require the transformation of the frequency-domain conditions into truncated time-domain conditions. To date, much of the literature focuses on “hard” factorizations of the multiplier, considering only one of the two frequency-domain conditions. Here it is shown that a symmetric, “doubly-hard” factorization is required to convert both frequency-domain conditions into truncated time-domain conditions. By using the appropriate factorization, a novel comparison between the results obtained by IQC and separation theories is then provided. As a result, we identify under what conditions the IQC theorem may provide some advantage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multipliers Theory

Multipliers are often used to find conditions for the absolute stability of Lur'e systems. They can be used either in conjunction with passivity theory or within the more recent framework of integral quadratic constraints (IQCs). This seminar presents two equivalence results within multiplier theory. In the first part of the seminar, passivity with multipliers and IQC theory are compared. The p...

متن کامل

Existence and Iterative Approximations of Solution for Generalized Yosida Approximation Operator

In this paper, we introduce and study a generalized Yosida approximation operator associated to H(·, ·)-co-accretive operator and discuss some of its properties. Using the concept of graph convergence and resolvent operator, we establish the convergence for generalized Yosida approximation operator. Also, we show an equivalence between graph convergence for H(·, ·)-co-accretive operator and gen...

متن کامل

Rational multiplier IQCs for uncertain time-delays and LMI stability conditions

This paper describes a set of delay-dependent IQC stability conditions for time-delay uncertainty. The IQC’s are linearly parameterized in terms of a pair of rational stability multipliers, each active over one of a pair of complementary frequency intervals. Using the finite-frequency positive real lemma, each of these finite-frequency IQC conditions are shown to be equivalent to a frequency-in...

متن کامل

The graph of equivalence classes and Isoclinism of groups

‎Let $G$ be a non-abelian group and let $Gamma(G)$ be the non-commuting graph of $G$‎. ‎In this paper we define an equivalence relation $sim$ on the set of $V(Gamma(G))=Gsetminus Z(G)$ by taking $xsim y$ if and only if $N(x)=N(y)$‎, ‎where $ N(x)={uin G | x textrm{ and } u textrm{ are adjacent in }Gamma(G)}$ is the open neighborhood of $x$ in $Gamma(G)$‎. ‎We introduce a new graph determined ...

متن کامل

Soil and Rock Slope Stability Analysis based on Numerical Manifold Method and Graph Theory

Limit equilibrium method, strength reduction method and Finite Difference Methods are the most prevalently used methods for soil and rock slope stability analysis. However, it can be mention that those have some limitations in practical application. In the Limit equilibrium method, the constitutive model cannot be considered and many assumptions are needed between slices of soil and rock. The s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.04816  شماره 

صفحات  -

تاریخ انتشار 2017