Silicon-based biosensors for rapid detection of protein or nucleic acid targets.

نویسندگان

  • R Jenison
  • H La
  • A Haeberli
  • R Ostroff
  • B Polisky
چکیده

BACKGROUND We developed a silicon-based biosensor that generates visual, qualitative results or quantitative results for the detection of protein or nucleic acid targets in a multiplex format. METHODS Capture probes were immobilized either passively or covalently on the optically coated surface of the biosensor. Intermolecular interactions of the immobilized capture probe with specific target molecules were transduced into a molecular thin film. Thin films were generated by enzyme-catalyzed deposition in the vicinity of the surface-bound target. The increased thickness on the surface changed the apparent color of the biosensor by altering the interference pattern of reflected light. RESULTS Cytokine detection was achieved in a 40-min multiplex assay. Detection limits were 4 ng/L for interleukin (IL)-6, 31 ng/L for IL1-beta, and 437 ng/L for interferon-gamma. In multianalyte experiments, cytokines were specifically detected with signal-to-noise ratios ranging from 15 to 80. With a modified optical surface, specificity was also demonstrated in a nucleic acid array with unambiguous discrimination of single-base changes in a 15-min assay. For homozygous wild-type and homozygous mutant samples, signal-to-noise ratios of approximately 100 were observed. Heterozygous samples yielded approximately equivalent signals for wild-type and mutant capture probes. CONCLUSIONS The thin-film biosensor allows rapid, sensitive, and specific detection of protein or nucleic acid targets in an array format with results read visually or quantified with a charge-coupled device camera. This biosensor is suited for multianalyte detection in clinical diagnostic assays.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study

The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...

متن کامل

Thin film biosensor for rapid visual detection of nucleic acid targets.

BACKGROUND We have developed a silicon-based biosensor that generates a visual signal in response to nucleic acid targets. METHODS In this system, capture oligonucleotide probes are immobilized on the surface of the biosensor. Interaction of the capture probes with a complementary target and a biotinylated detector oligonucleotide allows initiation of formation of an organic thin film on the ...

متن کامل

Specific detection of Shigella sonnei by enzyme-linked aptamer sedimentation assay

Development of potent new anti-Shigella agents for rapid and specific detection and treatment is of great importance. Aptamers, nucleic acid oligomers capable of specific binding to a wide range of non-nucleic acid targets, may be of value for this purpose. In the present study, we used a Systematic Evolution of Ligands by Exponential enrichment (SELEX) process to select DNA aptamers that b...

متن کامل

Over-the-Counter Biosensors: Past, Present, and Future

The demand for specific, low cost, rapid, sensitive and easy detection of biomolecules is huge. A well-known example is the glucose meters used by diabetics to monitor their blood glucose levels. Nowadays, a vast majority of the glucose meters are based on electrochemical biosensor technology. The inherent small size and simple construction of the electrochemical transducer and instrument are i...

متن کامل

Nanobiosensors and fluorescence based biosensors: An overview

A biosensor can sense biological elements after interaction with the recognition element. The signal produced due to interaction of the analyte with its biochemical element is transduced by a transducer and detected by appropriate modes. The miniaturization of these biosensors at the nano level using nanostructures as a platform for sensing the analyte or its detection is called a nanobiosensor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 47 10  شماره 

صفحات  -

تاریخ انتشار 2001