Motexafin gadolinium: a redox active drug that enhances the efficacy of bleomycin and doxorubicin.

نویسندگان

  • R A Miller
  • K W Woodburn
  • Q Fan
  • I Lee
  • D Miles
  • G Duran
  • B Sikic
  • D Magda
چکیده

The effect of motexafin gadolinium (MGd), a redox mediator, on tumor response to doxorubicin (Dox) and bleomycin (Bleo) was investigated in vitro and in vivo. MES-SA human uterine sarcoma cells were studied in vitro using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. Rif-1, a murine fibrosarcoma cell line, was studied using a clonogenic survival assay. Tumor growth delay assays were performed using the EMT-6 murine mammary sarcoma cell line in BALB/c mice. MGd (25-100 microM) produced dose-dependent enhancement of Bleo cytotoxicity to MES-SA cells. The IC(50) for Bleo was reduced by approximately 10-fold using 100 microM MGd. In clonogenic assays using Rif-1 cells, MGd enhanced the activity of Bleo approximately 1000-fold. This effect was shown to be mediated, in part, by MGd inhibition of potentially lethal damage repair. MGd enhanced the tumor response to bleomycin and Dox in vivo. MGd had no significant effect on the systemic exposure to Dox (expressed in terms of the plasma area under the curve, 0-24 h) and did not increase Dox myelosuppression. MGd enhanced the effectiveness of the redox active drugs, Bleo and Dox.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motexafin gadolinium generates reactive oxygen species and induces apoptosis in sensitive and highly resistant multiple myeloma cells.

Motexafin gadolinium (MGd), an expanded porphyrin, is a tumor-selective redox-mediator that reacts with many intracellular reducing metabolites. Because redox mechanisms mediate apoptosis in multiple myeloma, we hypothesized that disruption of redox balance by MGd would result in cellular cytotoxicity in myeloma. We examined the effects of MGd on cellular cytotoxicity, apoptosis, reactive oxyge...

متن کامل

Oxidative stress and apoptosis: a new treatment paradigm in cancer.

Redox regulation has been shown to be an important component of malignant cell survival. Tipping the cellular redox balance through pharmacologic regulation in favor of increasing intracellular reactive oxygen species (ROS) and/or depleting protective reducing metabolites (such as glutathione and nicotinamide adenine dinucleotide phosphate) may lead to oxidative stress and resultant induction o...

متن کامل

Epicatechin enhances anti-proliferative effect of bleomycin in ovarian cancer cell

Background: Bleomycin (BLM) is an anti-cancer drug widely used in the treatment of cancer. BLM causes several side effects related to DNA and cellular damage. The aim of this study was investigated the effects of tea polyphenol epicatechin on anti-proliferative effects induced by bleomycin in human normal skin and human ovarian cancer cells. Materials and Methods: Human ovarian cancer cell (SK...

متن کامل

Cancer Therapy: Clinical The Novel Expanded Porphyrin, Motexafin Gadolinium, Combined with [Y]Ibritumomab Tiuxetan for Relapsed/Refractory Non-Hodgkin's Lymphoma: Preclinical Findings and Results of a Phase I Trial

Purpose: Therapeutic strategies to enhance the efficacy of radioimmunotherapy have not been explored. Motexafin gadolinium is a novel anticancer agent that targets redox-dependent pathways and enhances sensitivity of tumor cells to ionizing radiation. Experimental Design:We did preclinical studies examining motexafin gadolinium combined with rituximab and/or radiation in lymphoma cells. We subs...

متن کامل

Motexafin gadolinium-induced cell death correlates with heme oxygenase-1 expression and inhibition of P450 reductase-dependent activities.

Heme oxygenase-1 (HO1), which oxidizes heme to biliverdin, CO, and free iron, conveys protection against oxidative stress and is antiapoptotic. Under stress conditions, some porphyrin derivatives can inhibit HO1 and trigger cell death. Motexafin gadolinium (MGd) is an expanded porphyrin that selectively targets cancer cells through a process of futile redox cycling that decreases intracellular ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2001