Non-perturbative regularization and renormalization: simple examples from non-relativistic quantum mechanics
نویسندگان
چکیده
We examine several zero-range potentials in non-relativistic quantum mechanics. The study of such potentials requires regularization and renormalization. We contrast physical results obtained using dimensional regularization and cutoff schemes and show explicitly that in certain cases dimensional regularization fails to reproduce the results obtained using cutoff regularization. First we consider a delta-function potential in arbitrary space dimensions. Using cutoff regularization we show that for d ≥ 4 the renormalized scattering amplitude is trivial. In contrast, dimensional regularization can yield a nontrivial scattering amplitude for odd dimensions greater than or equal to five. We also consider a potential consisting of a delta function plus the derivative-squared of a delta function in three dimensions. We show that the renormalized scattering amplitudes obtained using the two regularization schemes are different. Moreover we find that in the cutoff-regulated calculation the effective range is necessarily negative in the limit that the cutoff is taken to infinity. In contrast, in dimensional regularization the effective range is unconstrained. We discuss how these discrepancies arise from the dimensional regularization prescription that all power-law divergences vanish. We argue that these results demonstrate that dimensional regularization can fail in a nonperturbative setting.
منابع مشابه
2 00 1 New physics in the charged relativistic Bose gas using zeta - function regularization ? 1
The multiplicative anomaly, recently introduced in QFT, plays a fundamental role in solving some mathematical inconsistencies of the widely used zeta-function regularization method. Its physical relevance is still an open question and is here analyzed in the light of a non-perturbative method. Even in this approach the “different physics” seems to hold and not to be easily removable by renormal...
متن کاملRenormalization of the Regularized Relativistic Electron-positron Field
We consider the relativistic electron-positron field interacting with itself via the Coulomb potential defined with the physically motivated, positive, density-density quartic interaction. The more usual normal-ordered Hamiltonian differs from the bare Hamiltonian by a quadratic term and, by choosing the normal ordering in a suitable, self-consistent manner, the quadratic term can be seen to be...
متن کاملConstructive Quantum Field Theory
The pioneering work of early non-relativistic quantum theory led to the understanding that quantum dynamics on Hilbert space is a comprehensive predictive framework for microscopic phenomena. From the Bohr atom, through the nonrelativistic quantum theory of Schrödinger and Heisenberg, and the relativistic Dirac equation for hydrogen, agreement between calculation and experiment improved rapidly...
متن کاملRenormalized versions of the massless Thirring model
We present a non–perturbative study of the (1+1)-dimensional massless Thirring model by using path integral methods. The model presents two features, one of them has a local gauge symmetry that is implemented at quantum level and the other one without this symmetry. We make a detailed analysis of their UV divergence structure, a non–perturbative regularization and renormalization processes are ...
متن کاملRenormalization and quantum field theory
The aim of this paper is to describe how to use regularization and renormalization to construct a perturbative quantum field theory from a Lagrangian. We first define renormalizations and Feynman measures, and show that although there need not exist a canonical Feynman measure, there is a canonical orbit of Feynman measures under renormalization. We then construct a perturbative quantum field t...
متن کامل