Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells
نویسندگان
چکیده
ATP-sensitive potassium channels (KATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, KATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism-secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear. In this paper, we demonstrate that zebrafish islet β-cells express functional KATP channels of similar subunit composition, structure and metabolic sensitivity to their mammalian counterparts. We further show that pharmacological activation of native zebrafish KATP using diazoxide, a specific KATP channel opener, is sufficient to disturb glucose tolerance in adult zebrafish. That β-cell KATP channel expression and function are conserved between zebrafish and mammals illustrates the evolutionary conservation of islet metabolic sensing from fish to humans, and lends relevance to the use of zebrafish to model islet glucose sensing and diseases of membrane excitability such as neonatal diabetes.
منابع مشابه
Expression and function of ATP-dependent potassium channels in zebrafish islet Î2-cells
Expression and function of ATP-dependent potassium channels in zebrafish islet β-cells." Royal function of ATP-dependent potassium channels in zebrafish islet β-cells. ATP-sensitive potassium channels (K ATP channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K ATP channels are essential for coupling glucose metabolism to insulin secretion. While orthologous gene...
متن کاملUpregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets
Plasma insulin oscillations are known to have physiological importance in the regulation of blood glucose. In insulin-secreting β-cells of pancreatic islets, K(ATP) channels play a key role in regulating glucose-dependent insulin secretion. In addition, they convey oscillations in cellular metabolism to the membrane by sensing adenine nucleotides, and are thus instrumental in mediating pulsatil...
متن کاملThe Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels
Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...
متن کاملOvernutrition induces β-cell differentiation through prolonged activation of β-cells in zebrafish larvae.
Insulin from islet β-cells maintains glucose homeostasis by stimulating peripheral tissues to remove glucose from circulation. Persistent elevation of insulin demand increases β-cell number through self-replication or differentiation (neogenesis) as part of a compensatory response. However, it is not well understood how a persistent increase in insulin demand is detected. We have previously dem...
متن کاملDecreasing Cx36 Gap Junction Coupling Compensates for Overactive KATP Channels to Restore Insulin Secretion and Prevent Hyperglycemia in a Mouse Model of Neonatal Diabetes
Mutations to the ATP-sensitive K(+) channel (KATP channel) that reduce the sensitivity of ATP inhibition cause neonatal diabetes mellitus via suppression of β-cell glucose-stimulated free calcium activity ([Ca(2+)]i) and insulin secretion. Connexin-36 (Cx36) gap junctions also regulate islet electrical activity; upon knockout of Cx36, β-cells show [Ca(2+)]i elevations at basal glucose. We hypot...
متن کامل