Atomic H-Induced Mo2C Hybrid as an Active and Stable Bifunctional Electrocatalyst.

نویسندگان

  • Xiujun Fan
  • Yuanyue Liu
  • Zhiwei Peng
  • Zhenhua Zhang
  • Haiqing Zhou
  • Xianming Zhang
  • Boris I Yakobson
  • William A Goddard
  • Xia Guo
  • Robert H Hauge
  • James M Tour
چکیده

Mo2C nanocrystals (NCs) anchored on vertically aligned graphene nanoribbons (VA-GNR) as hybrid nanoelectrocatalysts (Mo2C-GNR) are synthesized through the direct carbonization of metallic Mo with atomic H treatment. The growth mechanism of Mo2C NCs with atomic H treatment is discussed. The Mo2C-GNR hybrid exhibits highly active and durable electrocatalytic performance for the hydrogen-evolution reaction (HER) and oxygen-reduction reaction (ORR). For HER, in an acidic solution the Mo2C-GNR has an onset potential of 39 mV and a Tafel slope of 65 mV dec-1, and in a basic solution Mo2C-GNR has an onset potential of 53 mV, and Tafel slope of 54 mV dec-1. It is stable in both acidic and basic media. Mo2C-GNR is a high-activity ORR catalyst with a high peak current density of 2.01 mA cm-2, an onset potential of 0.93 V that is more positive vs reversible hydrogen electrode (RHE), a high electron transfer number n (∼3.90), and long-term stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction.

A non-precious metal electrocatalyst has been developed for the oxygen reduction reaction based on nanoporous molybdenum carbide (nano-Mo2C) wires through a facile calcination of sub-nanometer periodic organic-inorganic hybrid nanowires. The highly dispersed Mo2C wires were composed of 10-15 nm nanocrystals with a mesopore size of 3.3 nm. The properties of nano-Mo2C wires were characterized usi...

متن کامل

Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N‐Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media

Molybdenum carbide (Mo2C) is recognized as an alternative electrocatalyst to noble metal for the hydrogen evolution reaction (HER). Herein, a facile, low cost, and scalable method is provided for the fabrication of Mo2C-based eletrocatalyst (Mo2C/G-NCS) by a spray-drying, and followed by annealing. As-prepared Mo2C/G-NCS electrocatalyst displays that ultrafine Mo2C nanopartilces are uniformly e...

متن کامل

Mo2C nanoparticles embedded within bacterial cellulose-derived 3D N-doped carbon nanofiber networks for efficient hydrogen evolution

Molybdenum carbide (Mo2C) has been considered as a promising non-noble-metal hydrogen evolution reaction (HER) electrocatalyst for future clean energy devices. In this work, we report a facile, green, low-cost and scalable method for the synthesis of a Mo2C-based HER electrocatalyst consisting of ultrafine Mo2C nanoparticles embedded within bacterial cellulosederived 3D N-doped carbon nanofiber...

متن کامل

Ultrafine Mo2C nanoparticles encapsulated in N-doped carbon nanofibers with enhanced lithium storage performance.

Rechargeable lithium ion batteries (LIBs) have attracted extensive attention globally due to their good cycling stability, high energy density, and rapid-rate capability, while the rational design of electrode materials can significantly improve their electrochemical performance. In this work, ultrafine Mo2C nanoparticles (NPs) were successfully encapsulated in one dimensional (1D) N-doped poro...

متن کامل

Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions.

Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arisi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2017