Scalariform-to-simple transition in vessel perforation plates triggered by differences in climate during the evolution of Adoxaceae
نویسندگان
چکیده
BACKGROUND AND AIMS Angiosperms with simple vessel perforations have evolved many times independently of species having scalariform perforations, but detailed studies to understand why these transitions in wood evolution have happened are lacking. We focus on the striking difference in wood anatomy between two closely related genera of Adoxaceae, Viburnum and Sambucus, and link the anatomical divergence with climatic and physiological insights. METHODS After performing wood anatomical observations, we used a molecular phylogenetic framework to estimate divergence times for 127 Adoxaceae species. The conditions under which the genera diversified were estimated using ancestral area reconstruction and optimization of ancestral climates, and xylem-specific conductivity measurements were performed. KEY RESULTS Viburnum, characterized by scalariform vessel perforations (ancestral), diversified earlier than Sambucus, having simple perforations (derived). Ancestral climate reconstruction analyses point to cold temperate preference for Viburnum and warm temperate for Sambucus This is reflected in the xylem-specific conductivity rates of the co-occurring species investigated, showing that Viburnum lantana has rates much lower than Sambucus nigra CONCLUSIONS: The lack of selective pressure for high conductive efficiency during early diversification of Viburnum and the potentially adaptive value of scalariform perforations in frost-prone cold temperate climates have led to retention of the ancestral vessel perforation type, while higher temperatures during early diversification of Sambucus have triggered the evolution of simple vessel perforations, allowing more efficient long-distance water transport.
منابع مشابه
Single-vessel flow measurements indicate scalariform
During vessel evolution in angiosperms, scalariform perforation plates with many slit-like openings transformed into simple plates with a single circular opening. The transition is hypothesized to have resulted from selection for decreased hydraulic resistance. Previously, additional resistivity of scalariform plates was estimated to be small – generally 10% or less above lumen resistivity – ba...
متن کاملWood Anatomy of Crossosomatales: Patterns of Wood Evolution with Relation to Phylogeny and Ecology
The seven families hypothesized by Sosa and Chase to comprise Crossosomatales possess relatively long vessel elements with scalariform perforation plates and scalariform to opposite vessel-ray pitting; tracheids; diffuse axial parenchyma; and heterogeneous rays. These and other primitive character states do not indicate relationships, but they do not offer any evidence against the idea that Cro...
متن کاملComparative wood anatomy of epacrids (Styphelioideae, Ericaceae s.L.).
The wood anatomy of 16 of the 37 genera within the epacrids (Styphelioideae, Ericaceae s.l.) is investigated by light and scanning electron microscopy. Several features in the secondary xylem occur consistently at the tribal level: arrangement of vessel-ray pits, distribution of axial parenchyma, ray width, and the presence and location of crystals. The primitive nature of Prionoteae and Archer...
متن کاملHydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.
High vein density (D(V)) evolution in angiosperms represented a key functional transition. Yet, a mechanistic account on how this hydraulic transformation evolved remains lacking. We demonstrate that a consequence of producing high D(V is that veins must become very small to fit inside the leaf, and that angiosperms are the only clade that evolved the specific type of vessel required to yield s...
متن کاملWood Anatomy of Stilbaceae and Retziaceae: Ecological and Systematic Implications
Wood anatomy of ten species in five genera of the Cape Province (South Africa) family Stilbaceae is reported in quantitative and qualitative terms. Wood anatomy for stem, root, and lignotuber is reported for the monotypic Cape genus Retzia. Stilbaceae and Retziaceae are alike in wood anatomy but differ from Verbenaceae by having scalariform perforation plates with few and wide-bordered bars (si...
متن کامل