Targets of Tyrosine Nitration in Diabetic Rat Retina*□S

نویسندگان

  • Xianquan Zhan
  • Yunpeng Du
  • John S. Crabb
  • Xiaorong Gu
  • Timothy S. Kern
  • John W. Crabb
چکیده

Diabetic retinopathy, a retinal vascular disease, is inhibited in animals treated with aminoguanidine, an inhibitor of inducible nitric-oxide synthase. This treatment also reduces retinal protein nitration, which is greater in diabetic rat retina than nondiabetic retina. As an approach to understanding the molecular mechanisms of diabetic retinopathy, we sought the identity of nitrotyrosine-containing proteins in retina from streptozotocin-induced diabetic rats and in a rat retinal Müller cell line grown in high glucose (25 mM). Anti-nitrotyrosine immunoprecipitation products from rat retina and Müller cells were analyzed by LC-MS/MS. Ten nitrated proteins in diabetic rat retina and three nitrated proteins in Müller cells grown in high glucose were identified; three additional nitrotyrosine-containing proteins were tentatively identified from diabetic retina. The identified nitrotyrosine-containing proteins participate in a variety of processes including glucose metabolism, signal transduction, and transcription/translation. Among the nitrated proteins were insulinresponsive glucose transporter type 4 (GLUT-4), which has been implicated previously in the pathogenesis of diabetes mellitus; exocyst complex component Exo70, which functions in insulin-stimulated glucose uptake of GLUT-4-containing vesicles; and fibroblast growth factor receptor 2, which influences retinal vascularization via fibroblast growth factor signaling. Nitration of tyrosine phosphorylation sites were identified in five proteins, including GLUT-4, exocyst complex component Exo70, protein-tyrosine phosphatase , sensory neuron synuclein, and inositol trisphosphate receptor 3. Quantitation of nitration and phosphorylation at common tyrosine modification sites in GLUT-4 and protein-tyrosine phosphatase from diabetic and nondiabetic animals suggests that nitration reduced tyrosine phosphorylation 2 in these proteins from diabetic retina. The present results provide new insights regarding tyrosine nitration and its potential role in the molecular mechanisms of diabetic retinopathy. Molecular & Cellular Proteomics 7:864–874, 2008.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targets of tyrosine nitration in diabetic rat retina.

Diabetic retinopathy, a retinal vascular disease, is inhibited in animals treated with aminoguanidine, an inhibitor of inducible nitric-oxide synthase. This treatment also reduces retinal protein nitration, which is greater in diabetic rat retina than nondiabetic retina. As an approach to understanding the molecular mechanisms of diabetic retinopathy, we sought the identity of nitrotyrosine-con...

متن کامل

Tyrosine nitration impairs mammalian aldolase A activity.

Protein tyrosine nitration increases in vivo as a result of oxidative stress and is elevated in numerous inflammatory-associated diseases. Mammalian fructose-1,6-bisphosphate aldolases are tyrosine nitrated in lung epithelial cells and liver, as well as in retina under different inflammatory conditions. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization ti...

متن کامل

Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid CoA-transferase.

High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic complications, it is essential to identify specific proteins vulnerable to nitration with in vivo m...

متن کامل

Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes.

OBJECTIVE Recently we have shown that diabetes-induced retinal neurodegeneration positively correlates with oxidative stress and peroxynitrite. Studies also show that peroxynitrite impairs nerve growth factor (NGF) survival signaling in sensory neurons. However, the causal role of peroxynitrite and the impact of tyrosine nitration on diabetes-induced retinal neurodegeneration and NGF survival s...

متن کامل

Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice

Objective(s):Higher cellular reactive oxygen species (ROS) levels is important in reducing cellular energy charge (EC) by increasing the levels of key metabolic protein, and nitrosative modifications, and have been shown to damage the cardiac tissue of diabetic mice. However, the relation between energy production and heart function is unclear. Materials and Methods:Streptozotocin (STZ, 150 mg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008