Analysis of the DNA unwinding activity of RecQ family helicases.
نویسندگان
چکیده
The RecQ family of DNA helicases is highly conserved in evolution from bacteria to mammals. There are five human RecQ family members (RECQ1, BLM, WRN, RECQ4 and RECQ5), defects, three of which give rise to inherited human disorders. Mutations of BLM have been identified in patients with Bloom's syndrome, WRN has been shown to be mutated in Werner's syndrome, while mutations of RECQ4 have been associated with at least a subset of cases of both Rothmund-Thomson syndrome and RAPADILINO. The most characteristic features of these diseases are a predisposition to the development of malignancies of different types (particularly in Bloom's syndrome), some aspects of premature aging (particularly in Werner's syndrome), and on the cellular level, genome instability. In order to gain understanding of the molecular defects underlying these diseases, many laboratories have focused their research on a study of the biochemical properties of human RecQ helicases, particularly those associated with disease, and of RecQ proteins from other organisms (e.g., Sgs1p of budding yeast, Rqh1p of fission yeast, and RecQ of E.coli). In this chapter, we summarize the assay systems that we employ to analyze the catalytic properties of the BLM helicase. We have successfully used these methods for the study of other RecQ and non-RecQ helicases, indicating that they are likely to be applicable to all helicases.
منابع مشابه
Substrate-specific inhibition of RecQ helicase.
The RecQ helicases constitute a small but highly conserved helicase family. Proteins in this family are of particular interest because they are critical to maintenance of genomic stability in prokaryotes and eukaryotes. Eukaryotic RecQ helicase family members have been shown to unwind not only DNA duplexes but also DNAs with alternative structures, including structures stabilized by G quartets ...
متن کاملRPA alleviates the inhibitory effect of vinylphosphonate internucleotide linkages on DNA unwinding by BLM and WRN helicases.
Bloom (BLM) and Werner (WRN) syndrome proteins are members of the RecQ family of SF2 DNA helicases. In this paper, we show that restricting the rotational DNA backbone flexibility, by introducing vinylphosphonate internucleotide linkages in the translocating DNA strand, inhibits efficient duplex unwinding by these enzymes. The human single-stranded DNA binding protein replication protein A (RPA...
متن کاملThe Escherichia coli RecQ helicase functions as a monomer.
The RecQ helicases belong to an important family of highly conserved DNA helicases that play a key role in chromosomal maintenance, and their defects have been shown to lead to several disorders and cancer in humans. In this work, the conformational and functional properties of the Escherichia coli RecQ helicase have been determined using a wide array of biochemical and biophysical techniques. ...
متن کاملBiochemical characterization of AtRECQ3 reveals significant differences relative to other RecQ helicases.
Members of the conserved RecQ helicase family are important for the preservation of genomic stability. Multiple RecQ homologs within one organism raise the question of functional specialization. Whereas five different homologs are present in humans, the model plant Arabidopsis (Arabidopsis thaliana) carries seven RecQ homologs in its genome. We performed biochemical analysis of AtRECQ3, expande...
متن کاملFine tuning of a DNA fork by the RecQ helicase.
Helicases are enzymes that couple the hydrolysis of ATP to the unwinding of duplex nucleic acids (NAs), thus providing the single-stranded NA (ssNA) intermediates necessary for nucleic acid processing and maintenance such as replication, recombination, repair, and transcription (1–3). All helicases possess a core helicase domain containing RecA-like motifs that are responsible for NA binding an...
متن کاملAnalysis of helicase activity and substrate specificity of Drosophila RECQ5.
RecQ5 is one of five RecQ helicase homologs identified in humans. Three of the human RecQ homologs (BLM, WRN and RTS) have been linked to autosomal recessive human genetic disorders (Bloom syndrome, Werner syndrome and Rothmund-Thomson syndrome, respectively) that display increased genomic instability and cause elevated levels of cancers in addition to other symptoms. To understand the role of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Methods in enzymology
دوره 409 شماره
صفحات -
تاریخ انتشار 2006