Inverse Scale Space Methods
نویسنده
چکیده
In this paper we generalize the iterated refinement method, introduced by the authors in a recent work, to a time-continuous inverse scale-space formulation. The iterated refinement procedure yields a sequence of convex variational problems, evolving toward the noisy image. The inverse scale space method arises as a limit for a penalization parameter tending to zero, while the number of iteration steps tends to infinity. For the limiting flow, similar properties as for the iterated refinement procedure hold. Specifically, when a discrepancy principle is used as the stopping criterion, the error between the reconstruction and the noise-free image decreases until termination, even if only the noisy image is available and a bound on the variance of the noise is known. The inverse flow is computed directly for one-dimensional signals, yielding high quality restorations. In higher spatial dimensions, we introduce a relaxation technique using two evolution equations. These equations allow fast, accurate, efficient and straightforward implementation. We investigate the properties of these new types of flows and show their excellent denoising capabilities, wherein noise can be well removed with minimal loss of contrast of larger objects.
منابع مشابه
Inverse Scale Space Theory for Inverse Problems
Abstract. In this paper we derive scale space methods for inverse problems which satisfy the fundamental axioms of fidelity and causality and we provide numerical illustrations of the use of such methods in deblurring. These scale space methods are asymptotic formulations of the Tikhonov-Morozov regularization method. The analysis and illustrations relate diffusion filtering methods in image pr...
متن کاملMultiscale Methods for Polyhedral Regularizations
In this paper we present the extension and generalization of the adaptive inverse scale space (aISS) method proposed for ` regularization in [BMBO11] to arbitrary polyhedral functions. We will see that the representation of a convex polyhedral function as a finitely generated function yields a fast and general aISS algorithm. We analyze its convergence and interpret the well known (forward) sca...
متن کاملConvex Inverse Scale Spaces
Inverse scale space methods are derived as asymptotic limits of iterative regularization methods. They have proven to be efficient methods for denoising of gray valued images and for the evaluation of unbounded operators. In the beginning, inverse scale space methods have been derived from iterative regularization methods with squared Hilbert norm regularization terms, and later this concept wa...
متن کاملNonlinear Inverse Scale Space Methods for Image Restoration
In this paper we generalize the iterated refinement method, introduced by the authors in [8], to a time-continuous inverse scale-space formulation. The iterated refinement procedure yields a sequence of convex variational problems, evolving toward the noisy image. The inverse scale space method arises as a limit for a penalization parameter tending to zero, while the number of iteration steps t...
متن کاملm-Projections involving Minkowski inverse and range symmetric property in Minkowski space
In this paper we study the impact of Minkowski metric matrix on a projection in the Minkowski Space M along with their basic algebraic and geometric properties.The relation between the m-projections and the Minkowski inverse of a matrix A in the minkowski space M is derived. In the remaining portion commutativity of Minkowski inverse in Minkowski Space M is analyzed in terms of m-projections as...
متن کامل