The (1+$\lambda$) Evolutionary Algorithm with Self-Adjusting Mutation Rate

نویسندگان

  • Benjamin Doerr
  • Christian Giessen
  • Carsten Witt
  • Jing Yang
چکیده

We propose a new way to self-adjust the mutation rate in population-based evolutionary algorithms in discrete search spaces. Roughly speaking, it consists of creating half the offspring with a mutation rate that is twice the current mutation rate and the other half with half the current rate. The mutation rate is then updated to the rate used in that subpopulation which contains the best offspring. We analyze how the (1+λ) evolutionary algorithm with this self-adjusting mutation rate optimizes the OneMax test function. We prove that this dynamic version of the (1+λ) EA finds the optimum in an expected optimization time (number of fitness evaluations) of O(nλ/log λ+n logn). This time is asymptotically smaller than the optimization time of the classic (1 + λ) EA. Previous work shows that this performance is best-possible among all λ-parallel mutation-based unbiased black-box algorithms. This result shows that the new way of adjusting the mutation rate can find optimal dynamic parameter values on the fly. Since our adjustment mechanism is simpler than the ones previously used for adjusting the mutation rate and does not have parameters itself, we are optimistic that it will find other applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Ant Colony Algorithm Method based on Mutation for FPGA Placement Problem

Many real world problems can be modelled as an optimization problem. Evolutionary algorithms are used to solve these problems. Ant colony algorithm is a class of evolutionary algorithms that have been inspired of some specific ants looking for food in the nature. These ants leave trail pheromone on the ground to mark good ways that can be followed by other members of the group. Ant colony optim...

متن کامل

OPTIMIZATION OF STEEL MOMENT FRAME BY A PROPOSED EVOLUTIONARY ALGORITHM

This paper presents an improved multi-objective evolutionary algorithm (IMOEA) for the design of planar steel frames. By considering constraints as a new objective function, single objective optimization problems turned to multi objective optimization problems. To increase efficiency of IMOEA different Crossover and Mutation are employed. Also to avoid local optima dynamic interference of mutat...

متن کامل

A Technique for Improving Web Mining using Enhanced Genetic Algorithm

World Wide Web is growing at a very fast pace and makes a lot of information available to the public. Search engines used conventional methods to retrieve information on the Web; however, the search results of these engines are still able to be refined and their accuracy is not high enough. One of the methods for web mining is evolutionary algorithms which search according to the user interests...

متن کامل

خوشه‌بندی خودکار داده‌ها با بهره‌گیری از الگوریتم رقابت استعماری بهبودیافته

Imperialist Competitive Algorithm (ICA) is considered as a prime meta-heuristic algorithm to find the general optimal solution in optimization problems. This paper presents a use of ICA for automatic clustering of huge unlabeled data sets. By using proper structure for each of the chromosomes and the ICA, at run time, the suggested method (ACICA) finds the optimum number of clusters while optim...

متن کامل

Exploring dynamic self-adaptive populations in differential evolution

Although the Differential Evolution (DE) algorithm has been shown to be a simple yet powerful evolutionary algorithm for optimizing continuous functions, users are still faced with the problem of preliminary testing and hand-tuning of the evolutionary parameters prior to commencing the actual optimization process. As a solution, self-adaptation has been found to be highly beneficial in automati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017