A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding

نویسندگان

  • Gang Tang
  • Bin Yang
  • Cheng Hou
  • Guimiao Li
  • Jingquan Liu
  • Xiang Chen
  • Chunsheng Yang
چکیده

Recently, piezoelectric energy harvesters (PEHs) have been paid a lot of attention by many researchers to convert mechanical energy into electrical and low level vibration. Currently, most of PEHs worked under high frequency and low level vibration. In this paper, we propose a micro cantilever generator based on the bonding of bulk PZT wafer and phosphor bronze, which is fabricated by MEMS technology, such as mechanical chemical thinning and etching. The experimental results show that the open-circuit output voltage, output power and power density of this fabricated prototype are 35 V, 321 μW and 8664 μW cm-3 at the resonant frequency of 100.8 Hz, respectively, when it matches an optimal loading resistance of 140 kΩ under the excitation of 3.0 g acceleration. The fabricated micro generator can obtain the open-circuit stable output voltage of 61.2 V when the vibration acceleration arrives at 7.0 g. Meanwhile, when this device is pasted on the vibrating vacuum pump, the output voltage is about 11 V. It demonstrates that this novel proposed device can scavenge high vibration level energy at low frequency for powering the inertial sensors in internet of things application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of t...

متن کامل

Vibration Energy Harvesting with Pzt Thin Film Micro Device

A micro power generator for harvesting vibration energy by means of a piezoelectric laminated cantilever with inertial mass was designed, fabricated, and characterized. The device was micro machined from a silicon-on-insulator structure coated with a 2μm thick piezoelectric PZT thin film. Interdigitated electrodes (IDE) were applied to achieve higher voltages. A piezoelectric coupling constant ...

متن کامل

Sol-Gel Synthesis and Piezoelectric and Structural Properties of Zr –rich PZT Nanoparticles

Lead zirconate titanate (PZT) nanopowders with spherical-shaped morphology, perovskite structure and an average size of 20 nm were successfully synthesized. The prepared PZT nanopowders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray (EDS) and Transmission electron microscopy (TEM) technique. Single-...

متن کامل

MEMS Pressure Sensor With Two Thin Film Piezoelectric Read-Out

We propose the structure to have only two pares of PZT thin films on the basis of [11]. This causes the structure to become simpler and easier to fabricate. And except its first vibration mode that is also the base mode, the other modes have no effect on the acceleration measurement. So it can be a better choice for the measurement of acceleration and it can have a huge potential as a micro-sen...

متن کامل

Modeling and analysis of micro piezoelectric power generators for micro-electromechanical- systems applications

The extremely small size of the micro-electromechanical systems (MEMS) makes them widely suitable for some special applications. The simplicity of the piezoelectric micro-generators is attractive for MEMS applications, especially for remote systems. In this paper, a general concept of the piezoelectric energy conversion is first given. A simple design modeling and analysis of the ‘31’ transvers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016