Secretory granule behaviour adjacent to the plasma membrane before and during exocytosis: total internal reflection fluorescence microscopy studies.

نویسندگان

  • R W Holz
  • D Axelrod
چکیده

Our current notions of different granule pools, granule interaction with the plasma membrane, and ultimately granule and plasma membrane soluble N-ethylmaleimide-sensitive-factor attachment protein (SNARE) interactions, result largely from inferences based upon biochemical alterations of secretion kinetics. Another view of events comes from studies using total internal reflection fluorescence microscopy (TIRFM) to investigate granule behaviour immediately adjacent to the plasma membrane. The motions of secretory (chromaffin) granules in bovine chromaffin cells visualized by TIRFM are highly restricted, as if granules are caged or tethered. These small motions are regulated by ATP and Ca2+, two factors that increase priming of the secretory response. There is no evidence that granules decrease their motion immediately before secretion. To the contrary, there is a tendency for granules to increase their motions and travel within a few hundred milliseconds of fusion. Hence, the notion of a long-lived docked state as a prelude to fusion does not encompass the physical reality of molecular scale motions, multiple tethering states and significant travel immediately preceding the exocytotic event. Increased travel may increase the probability of granules interacting productively with the plasma membrane constituents, thereby, increasing the probability of fusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Motion matters: secretory granule motion adjacent to the plasma membrane and exocytosis.

Total internal reflection fluorescence microscopy was used to monitor changes in individual granule motions related to the secretory response in chromaffin cells. Because the motions of granules are very small (tens of nanometers), instrumental noise in the quantitation of granule motion was taken into account. ATP and Ca2+, both of which prime secretion before fusion, also affect granule motio...

متن کامل

Visualization of Regulated Exocytosis with a Granule- Membrane Probe Using Total Internal Reflection Microscopy□V

Secretory granules labeled with Vamp-green fluorescent protein (GFP) showed distinct signatures upon exocytosis when viewed by total internal reflection fluorescence microscopy. In 90% of fusion events, we observed a large increase in fluorescence intensity coupled with a transition from a small punctate appearance to a larger, spreading cloud with free diffusion of the Vamp-GFP into the plasma...

متن کامل

Visualization of regulated exocytosis with a granule-membrane probe using total internal reflection microscopy.

Secretory granules labeled with Vamp-green fluorescent protein (GFP) showed distinct signatures upon exocytosis when viewed by total internal reflection fluorescence microscopy. In approximately 90% of fusion events, we observed a large increase in fluorescence intensity coupled with a transition from a small punctate appearance to a larger, spreading cloud with free diffusion of the Vamp-GFP i...

متن کامل

Increased motion and travel, rather than stable docking, characterize the last moments before secretory granule fusion.

The state of secretory granules immediately before fusion with the plasma membrane is unknown, although the granules are generally assumed to be stably bound (docked). We had previously developed methods using total internal reflection fluorescence microscopy and image analysis to determine the position of chromaffin granules immediately adjacent to the plasma membrane with high precision, ofte...

متن کامل

Localized topological changes of the plasma membrane upon exocytosis visualized by polarized TIRFM

Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane-cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta physiologica

دوره 192 2  شماره 

صفحات  -

تاریخ انتشار 2008