Dafermos Regularization of a Diffusive-dispersive Equation with Cubic Flux

نویسندگان

  • Stephen Schecter
  • Monique Richardson Taylor
  • Bernold Fiedler
  • RICHARDSON TAYLOR
چکیده

We study existence and spectral stability of stationary solutions of the Dafermos regularization of a much-studied diffusive-dispersive equation with cubic flux. Our study includes stationary solutions that corresponds to Riemann solutions consisting of an undercompressive shock wave followed by a compressive shock wave. We use geometric singular perturbation theory (1) to construct the solutions, and (2) to show that asmptotically, there are no large eigenvalues, and any order-one eigenvalues must be near −1 or a certain number λ∗. We give numerical evidence that λ∗ is also −1. Finally, we use pseudoexponential dichotomies to show that in a space of exponentially decreasing functions, the essential spectrum is contained in Reλ ≤ −δ < 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular limits for a parabolic-elliptic regularization of scalar conservation laws

We consider scalar hyperbolic conservation laws with a nonconvex flux, in one space dimension. Then, weak solutions of the associated initial-value problems can contain undercompressive shock waves. We regularize the hyperbolic equation by a parabolic-elliptic system that produces undercompressive waves in the hyperbolic limit regime. Moreover we show that in another limit regime, called capill...

متن کامل

Dispersive and Diffusive-Dispersive Shock Waves for Nonconvex Conservation Laws

We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of di↵usion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-di↵usion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A r...

متن کامل

Composite Waves in the Dafermos Regularization

The result of this paper is that certain composite-wave solutions of scalar conservation laws have nearby scale-invariant solutions of the Dafermos regularization. This result supports the conjecture that all structurally stable Riemann solutions have scale-invariant solutions of the Dafermos regularization nearby. It thereby supports the validity of approximating Riemann solutions by numerical...

متن کامل

Existence of Traveling Waves for Diffusive-dispersive Conservation Laws

In this work we show the existence existence and uniqueness of traveling waves for diffusive-dispersive conservation laws with flux function in C1(R), by using phase plane analysis. Also we estimate the domain of attraction of the equilibrium point attractor corresponding to the right-hand state. The equilibrium point corresponding to the left-hand state is a saddle point. According to the phas...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012