A new sufficient condition for hamiltonian graphs

نویسنده

  • Pierre Fraisse
چکیده

The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u), d(v)}≥n/2 for each pair of vertices u and v with distance d(u, v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u, v∈V (G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)| +d(u), |N(w)∪N(z)|+d(v)}≥n for every choice of vertices x, y, u,w, z and v such that d(x, y)= d(y, u)=d(w, z)=d(z, v)=d(u, v)=2 and where x, y and u are three distinct vertices and w, z and v are also three distinct vertices (and possibly |{x, y}∩{w, z}| is 1 or 2), then G is Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new constraint of the Hamilton cycle algorithm

Grinberg’s theorem is a necessary condition for the planar Hamilton graphs. In this paper, we use cycle bases and removable cycles to survey cycle structures of the Hamiltonian graphs and derive an equation of the interior faces in Grinberg’s Theorem. The result shows that Grinberg’s Theorem is suitable for the connected and simple graphs. Furthermore, by adding a new constraint of solutions to...

متن کامل

A New Property of Hamilton Graphs

A Hamilton cycle is a cycle containing every vertex of a graph. A graph is called Hamiltonian if it contains a Hamilton cycle. The Hamilton cycle problem is to find the sufficient and necessary condition that a graph is Hamiltonian. In this paper, we give out some new kind of definitions of the subgraphs and determine the Hamiltoncity of edges according to the existence of the subgraphs in a gr...

متن کامل

Maximally non-hamiltonian graphs of girth 7

We describe a sufficient condition for graphs used in a construction of Thomassen (which yields hypohamiltonian graphs) to produce maximally non-hamiltonian (MNH) graphs as well. Then we show that the Coxeter graph fulfils this sufficient condition, and thus applying the Thomassen’s construction to multiple copies of the Coxeter graph yields infinitely many MNH graphs with girth 7. So far, the ...

متن کامل

Characterizing forbidden pairs for hamiltonian properties 1

In this paper we characterize those pairs of forbidden subgraphs sufficient to imply various hamiltonian type properties in graphs. In particular, we find all forbidden pairs sufficient, along with a minor connectivity condition, to imply a graph is traceable, hamiltonian, pancyclic, panconnected or cycle extendable. We also consider the case of hamiltonian-connected graphs and present a result...

متن کامل

Geometric-Arithmetic Index of Hamiltonian Fullerenes

A graph that contains a Hamiltonian cycle is called a Hamiltonian graph. In this paper we compute the first and the second geometric – arithmetic indices of Hamiltonian graphs. Then we apply our results to obtain some bounds for fullerene.

متن کامل

Hamiltonian Path in 2-Trees

For a connected graph, a path containing all vertices is known as Hamiltonian path. For general graphs, there is no known necessary and sufficient condition for the existence of Hamiltonian paths and the complexity of finding a Hamiltonian path in general graphs is NP-Complete. We present a necessary and sufficient condition for the existence of Hamiltonian paths in 2-trees. Using our character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 10  شماره 

صفحات  -

تاریخ انتشار 1986