The Impact of Reconstruction Methods, Phylogenetic Uncertainty and Branch Lengths on Inference of Chromosome Number Evolution in American Daisies (Melampodium, Asteraceae)
نویسندگان
چکیده
Chromosome number change (polyploidy and dysploidy) plays an important role in plant diversification and speciation. Investigating chromosome number evolution commonly entails ancestral state reconstruction performed within a phylogenetic framework, which is, however, prone to uncertainty, whose effects on evolutionary inferences are insufficiently understood. Using the chromosomally diverse plant genus Melampodium (Asteraceae) as model group, we assess the impact of reconstruction method (maximum parsimony, maximum likelihood, Bayesian methods), branch length model (phylograms versus chronograms) and phylogenetic uncertainty (topological and branch length uncertainty) on the inference of chromosome number evolution. We also address the suitability of the maximum clade credibility (MCC) tree as single representative topology for chromosome number reconstruction. Each of the listed factors causes considerable incongruence among chromosome number reconstructions. Discrepancies between inferences on the MCC tree from those made by integrating over a set of trees are moderate for ancestral chromosome numbers, but severe for the difference of chromosome gains and losses, a measure of the directionality of dysploidy. Therefore, reliance on single trees, such as the MCC tree, is strongly discouraged and model averaging, taking both phylogenetic and model uncertainty into account, is recommended. For studying chromosome number evolution, dedicated models implemented in the program ChromEvol and ordered maximum parsimony may be most appropriate. Chromosome number evolution in Melampodium follows a pattern of bidirectional dysploidy (starting from x = 11 to x = 9 and x = 14, respectively) with no prevailing direction.
منابع مشابه
Effects of branch length uncertainty on Bayesian posterior probabilities for phylogenetic hypotheses.
In Bayesian phylogenetics, confidence in evolutionary relationships is expressed as posterior probability--the probability that a tree or clade is true given the data, evolutionary model, and prior assumptions about model parameters. Model parameters, such as branch lengths, are never known in advance; Bayesian methods incorporate this uncertainty by integrating over a range of plausible values...
متن کاملThe Evolution of Haploid Chromosome Numbers in the Sunflower Family
Chromosome number changes during the evolution of angiosperms are likely to have played a major role in speciation. Their study is of utmost importance, especially now, as a probabilistic model is available to study chromosome evolution within a phylogenetic framework. In the present study, likelihood models of chromosome number evolution were fitted to the largest family of flowering plants, t...
متن کاملBacterial Phylogenetic Reconstruction from Whole Genomes Is Robust to Recombination but Demographic Inference Is Not
UNLABELLED Phylogenetic inference in bacterial genomics is fundamental to understanding problems such as population history, antimicrobial resistance, and transmission dynamics. The field has been plagued by an apparent state of contradiction since the distorting effects of recombination on phylogeny were discovered more than a decade ago. Researchers persist with detailed phylogenetic analyses...
متن کاملMultiple Pleistocene refugia and Holocene range expansion of an abundant southwestern American desert plant species (Melampodium leucanthum, Asteraceae).
Pleistocene climatic fluctuations had major impacts on desert biota in southwestern North America. During cooler and wetter periods, drought-adapted species were isolated into refugia, in contrast to expansion of their ranges during the massive aridification in the Holocene. Here, we use Melampodium leucanthum (Asteraceae), a species of the North American desert and semi-desert regions, to inve...
متن کاملPhylogenetic position of Mediterranean Astereae and character evolution of daisies (Bellis, Asteraceae) inferred from nrDNA ITS sequences.
Phylogenetic analyses of nrITS sequences of Asteraceae revealed that the Bellis group is a natural assemblage comprising all the species of Bellis and Bellium, but not Rhynchospermum. In contrast, we propose to include the genera Bellis, Bellium, and Bellidastrum in the subtribe Bellidinae in the interest of circumscribing natural groups. Our results also suggest an early diversification in the...
متن کامل