Multi-View Fuzzy Clustering with Minimax Optimization for Effective Clustering of Data from Multiple Sources
نویسندگان
چکیده
Multi-view data clustering refers to categorizing a data set by making good use of related information from multiple representations of the data. It becomes important nowadays because more and more data can be collected in a variety of ways, in different settings and from different sources, so each data set can be represented by different sets of features to form different views of it. Many approaches have been proposed to improve clustering performance by exploring and integrating heterogeneous information underlying different views. In this paper, we propose a new multi-view fuzzy clustering approach called MinimaxFCM by using minimax optimization based on well-known Fuzzy c means. In MinimaxFCM the consensus clustering results are generated based on minimax optimization in which the maximum disagreements of different weighted views are minimized. Moreover, the weight of each view can be learned automatically in the clustering process. In addition, there is only one parameter to be set besides the fuzzifier. The detailed problem formulation, updating rules derivation, and the in-depth analysis of the proposed MinimaxFCM are provided here. Experimental studies on nine multi-view data sets including real ∗Corresponding author Email addresses: [email protected] (Yangtao Wang), [email protected] (Lihui Chen) Preprint submitted to Elsevier August 26, 2016 ar X iv :1 60 8. 07 00 5v 1 [ cs .A I] 2 5 A ug 2 01 6 world image and document data sets have been conducted. We observed that MinimaxFCM outperforms related multi-view clustering approaches in terms of clustering accuracy, demonstrating the great potential of MinimaxFCM for multi-view data analysis.
منابع مشابه
Incremental Minimax Optimization based Fuzzy Clustering for Large Multi-view Data
Incremental clustering approaches have been proposed for handling large data when given data set is too large to be stored. The key idea of these approaches is to find representatives to represent each cluster in each data chunk and final data analysis is carried out based on those identified representatives from all the chunks. However, most of the incremental approaches are used for single vi...
متن کاملMultiple Medoids based Multi-view Relational Fuzzy Clustering with Minimax Optimization
Multi-view data becomes prevalent nowadays because more and more data can be collected from various sources. Each data set may be described by different set of features, hence forms a multi-view data set or multi-view data in short. To find the underlying pattern embedded in an unlabelled multiview data, many multi-view clustering approaches have been proposed. Fuzzy clustering in which a data ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملClustering of Fuzzy Data Sets Based on Particle Swarm Optimization With Fuzzy Cluster Centers
In current study, a particle swarm clustering method is suggested for clustering triangular fuzzy data. This clustering method can find fuzzy cluster centers in the proposed method, where fuzzy cluster centers contain more points from the corresponding cluster, the higher clustering accuracy. Also, triangular fuzzy numbers are utilized to demonstrate uncertain data. To compare triangular fuzzy ...
متن کاملConvex Subspace Representation Learning from Multi-View Data
Learning from multi-view data is important in many applications. In this paper, we propose a novel convex subspace representation learning method for unsupervised multi-view clustering. We first formulate the subspace learning with multiple views as a joint optimization problem with a common subspace representation matrix and a group sparsity inducing norm. By exploiting the properties of dual ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 72 شماره
صفحات -
تاریخ انتشار 2017