Towards a Characterisation of Pfaffian graphs

نویسندگان

  • Charles H. C. Little
  • Ilse Fischer
چکیده

A bipartite graph G is known to be Pfaffian if and only if it does not contain an even subdivision H of K3,3 such that G − V H contains a 1-factor. However a general characterisation of Pfaffian graphs in terms of forbidden subgraphs is currently not known. In this paper we describe a possible approach to the derivation of such a characterisation. We also extend the characterisation for bipartite graphs to a slightly more general class of graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Characterisation of Pfaffian Near Bipartite Graphs

A graph is 1-extendible if every edge has a 1-factor containing it. A 1-extendible non-bipartite graph G is said to be near bipartite if there exist edges e1 and e2 such that G − {e1, e2} is 1-extendible and bipartite. We characterise the Pfaffian near bipartite graphs in terms of forbidden subgraphs. The theorem extends an earlier characterisation of Pfaffian bipartite graphs.

متن کامل

Matching signatures and Pfaffian graphs

We prove that every 4-Pfaffian that is not Pfaffian essentially has a unique signature matrix. We also give a simple composition Theorem of 2r-Pfaffian graphs from r Pfaffian spanning subgraphs. We apply these results and exhibit a graph that is 6-Pfaffian but not 4-Pfaffian. This is a counter-example to a conjecture of Norine [5], which states that if a graph G is k-Pfaffian but not (k − 1)-Pf...

متن کامل

Minimally non-Pfaffian graphs

We consider the question of characterizing Pfaffian graphs. We exhibit an infinite family of non-Pfaffian graphs minimal with respect to the matching minor relation. This is in sharp contrast with the bipartite case, as Little [7] proved that every bipartite non-Pfaffian graph contains a matching minor isomorphic to K3,3. We relax the notion of a matching minor and conjecture that there are onl...

متن کامل

Even Circuits of Prescribed Clockwise Parity

We show that a graph has an orientation under which every circuit of even length is clockwise odd if and only if the graph contains no subgraph which is, after the contraction of at most one circuit of odd length, an even subdivision of K2,3. In fact we give a more general characterisation of graphs that have an orientation under which every even circuit has a prescribed clockwise parity. This ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008