A WSi-WSiN-Pt Metallization Scheme for Silicon Carbide-Based High Temperature Microsystems

نویسندگان

  • Ha-Duong Ngo
  • Biswajit Mukhopadhyay
  • Piotr Mackowiak
  • Kevin Kröhnert
  • Oswin Ehrmann
  • Klaus-Dieter Lang
چکیده

In this paper, we present and discuss our new WSi–WSiN–Pt metallization scheme for SiC-based microsystems for applications in harsh environments. Stoichiometric material WSi was selected as contact material for SiC. The diffusion barrier material WSiN was deposited from the same target as the contact material in order to limit the number of different chemical elements in the scheme. Our scheme was kept as simple as possible regarding the number of layers and chemical elements. Our scheme shows very good long-term stability and suitability for SiC-based microsystems. The experimental evaluation concept used here includes a combination of physical, electrical, and mechanical analysis techniques. This combined advance is necessary since modern physical analysis techniques still offer only limited sensitivity for detecting minimal changes in the metallization scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 °C. The previously observed maximum drift of ± 10 mV of the reference offset voltage at 600 °C was reduced to within ± 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructu...

متن کامل

Survey Report of Current Status of High Temperature Micro devices Packaging

Wide band-gap semiconductor materials such silicon carbide (SiC), gallium nitride (GaN), and diamond (C) based electronic devices may operate at temperatures above the high temperature limit of silicon technology. Among these wide band gap materials, single crystal SiC is the most mature material at this stage. SiC has such excellent physical and chemical material properties that SiC microsyste...

متن کامل

A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the...

متن کامل

Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration

The stabilities of Pt/Ti bilayer metallizations in an oxidizing atmosphere have been investigated with several thicknesses of interfacial Ti-bonding layers. Reactions in the Pt/Ti/SiO2/Si interface were examined as a function of various annealing conditions in the temperature range 200-800°C by using Rutherford backscattering spectrometry, Auger electron spectroscopy, x-ray diffraction, and tra...

متن کامل

NANOMANUFACTURING OF SiC CIRCUITS — NANOMECHANICAL LOGIC AND NEMS-JFET INTEGRATION

Silicon carbide (SiC) remains the most promising semiconductor for developing harsh environment microsystems, particularly in applications where temperatures exceed 300 °C. While significant progress has been made in the development of more conventional junction field effect transistors (JFET), many challenges remain, particularly in the realization of robust digital logic circuits. The authors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016