Incorporation of Alkylamine into Metal-Organic Frameworks through a Brønsted Acid-Base Reaction for CO2 Capture.

نویسندگان

  • Hao Li
  • Kecheng Wang
  • Dawei Feng
  • Ying-Pin Chen
  • Wolfgang Verdegaal
  • Hong-Cai Zhou
چکیده

The escalating atmospheric CO2 concentration is one of the most urgent environmental concerns of our age. To effectively capture CO2 , various materials have been studied. Among them, alkylamine-modified metal-organic frameworks (MOFs) are considered to be promising candidates. In most cases, alkylamine molecules are integrated into MOFs through the coordination bonds formed between open metal sites (OMSs) and amine groups. Thus, the alkylamine density, as well as the corresponding CO2 uptake in MOFs, are severely restricted by the density of OMSs. To overcome this limit, other approaches to incorporating alkylamine into MOFs are highly desired. We have developed a new method based on Brønsted acid-base reaction to tether alkylamines into Cr-MIL-101-SO3 H for CO2 capture. A systematic optimization of the amine tethering process was also conducted to maximize the CO2 uptake of the modified MOF. Under the optimal amine tethering condition, the obtained tris(2-aminoethyl)amine-functionalized Cr-MIL-101-SO3 H (Cr-MIL-101-SO3 H-TAEA) has a cyclic CO2 uptake of 2.28 mmol g-1 at 150 mbar and 40 °C, and 1.12 mmol g-1 at 0.4 mbar and 20 °C. The low-cost starting materials and simple synthetic procedure for the preparation of Cr-MIL-101-SO3 H-TAEA suggest that it has the potential for large-scale production and practical applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas.

Different alkylamine molecules were post-synthetically tethered to the unsaturated Cr(III) centers in the metal-organic framework MIL-101. The resultant metal-organic frameworks show almost no N2 adsorption with significantly enhanced CO2 capture under ambient conditions as a result of the interaction between amine groups and CO2 molecules. Given the extraordinary stability, high CO2 uptake, ul...

متن کامل

Carbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores

CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...

متن کامل

Crystal-Size Effects on Carbon Dioxide Capture of a Covalently Alkylamine-Tethered Metal-Organic Framework Constructed by a One-Step Self-Assembly

To enhance the carbon dioxide (CO2) uptake of metal-organic frameworks (MOFs), amine functionalization of their pore surfaces has been studied extensively. In general, amine-functionalized MOFs have been synthesized via post-synthetic modifications. Herein, we introduce a one-step construction of a MOF ([(NiLethylamine)(BPDC)] = MOFNH2; [NiLethylamine](2+) = [Ni(C12H32N8)](2+); BPDC(2-) = 4,4'-...

متن کامل

MWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property

In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...

متن کامل

Carbon dioxide capture in metal-organic frameworks.

Efforts to utilize metal-organic frameworks, a new class of materials exhibiting high surface areas, tunable pore dimensions, and adjustable surface functionality, for CO2 capture will be presented. Open metal coordination sites on the framework surface can deliver a high CO2 loading capacity at low pressures. However, additional criteria such as water stability and the selective binding of CO2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 9 19  شماره 

صفحات  -

تاریخ انتشار 2016