Bifurcations of Periodic Solutions Satisfying the Zero-Hamiltonian Constraint in Reversible Differential Equations
نویسندگان
چکیده
This is a study of the existence of bifurcation branches for the problem of finding even, periodic solutions in fourth-order, reversible Hamiltonian systems such that the Hamiltonian evaluates to zero along each solution on the branch. The class considered here is a generalization of both the Swift–Hohenberg and extended Fisher–Kolmogorov equations that have been studied in several recent papers. We obtain the existence of local bifurcations from a trivial solution under mild restrictions on the nonlinearity and obtain existence and disjointness results regarding the global nature of the resulting bifurcating continua for the case where the Hamiltonian has a single-well potential. The local results rest on two abstract bifurcation theorems which also have applications to sixthorder problems and which show that the curves of zero-Hamiltonian solutions are contained within two-dimensional manifolds of solutions of both negative and positive Hamiltonian.
منابع مشابه
Bifurcations of Periodic Solutions Satisfying the Zero-hamiltonian Constraint in Fourth-order Differential Equations
This is a study of the existence of bifurcation branches for the problem of finding even, periodic solutions in fourth-order, reversible Hamiltonian systems such that the Hamiltonian evaluates to zero along each solution on the branch. The class considered here is a generalisation of both the Swift-Hohenberg and extended Fisher-Kolmogorov equations that have been studied in several recent paper...
متن کاملON THE EXISTENCE OF PERIODIC SOLUTIONS FOR CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS
Here we consider some non-autonomous ordinary differential equations of order n and present some results and theorems on the existence of periodic solutions for them, which are sufficient conditions, section 1. Also we include generalizations of these results to vector differential equations and examinations of some practical examples by numerical simulation, section 2. For some special cases t...
متن کاملA Normal Form for Hamiltonian-Hopf Bifurcations in Nonlinear Schrödinger Equations with General External Potentials
A normal form is derived for Hamiltonian–Hopf bifurcations of solitary waves in nonlinear Schrödinger equations with general external potentials. This normal form is a simple second-order nonlinear ordinary differential equation (ODE) that is asymptotically accurate in describing solution dynamics near Hamiltonian–Hopf bifurcations. When the nonlinear coefficient in this normal form is complex,...
متن کاملThe B"{a}cklund transformation method of Riccati equation to coupled Higgs field and Hamiltonian amplitude equations
In this paper, we establish new exact solutions for some complex nonlinear wave equations. The B"{a}cklund transformation method of Riccati equation is used to construct exact solutions of the Hamiltonian amplitude equation and the coupled Higgs field equation. This method presents a wide applicability to handling nonlinear wave equations. These equations play a very important role in mathemati...
متن کاملAn iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint
In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 36 شماره
صفحات -
تاریخ انتشار 2005