Acute acidosis-induced alteration in bone bicarbonate and phosphate.

نویسندگان

  • David A Bushinsky
  • Susan B Smith
  • Konstantin L Gavrilov
  • Leonid F Gavrilov
  • Jianwei Li
  • Riccardo Levi-Setti
چکیده

During an acute fall in systemic pH due to a decrease in the concentration of serum bicarbonate ([HCO(3)(-)]), metabolic acidosis, there is an influx of hydrogen ions into the mineral phase of bone, buffering the decrement in pH. When bone is cultured in medium modeling acute metabolic acidosis, the influx of hydrogen ions is coupled to an efflux of sodium and potassium and a depletion of mineral carbonate. These ionic fluxes would be expected to neutralize some of the excess hydrogen ions and restore the pH toward normal. Approximately one-third of bone carbonate is located on the hydration shell of apatite, where it is readily accessible to the systemic circulation, whereas the remainder is located in less accessible areas. We hypothesize that the surface of bone would respond to acidosis in a different manner than the interior of bone, with depletion of carbonate preferentially occurring on the bone surface. We utilized a high-resolution scanning ion microprobe with secondary ion mass spectroscopy to localize the changes in bone carbonate, as measured by HCO(3)(-), and phosphate and determine their relative contribution to the buffering of hydrogen ions during acute metabolic acidosis. Neonatal mouse calvariae were incubated in control medium (pH approximately 7.44, [HCO(3)(-)] approximately 27 mM) or in medium acidified by a reduction in [HCO(3)(-)] (pH approximately 7.14, [HCO(3)(-)] approximately 13). Compared with control, after a 3-h incubation in acidic medium there is a fivefold decrease in surface HCO(3)(-) with respect to the carbon-carbon bond (C(2)) and a threefold decrease in surface HCO(3)(-) with respect to the carbon-nitrogen bond (CN) with no change in cross-sectional HCO(3)(-). Compared with control, after a 3-h incubation in acidic medium there is a 10-fold decrease in cross-sectional phosphate with respect to C(2) and a 10-fold decrease in cross-sectional phosphate with respect to CN, with no change in surface phosphate. On the bone surface, there is a fourfold depletion of HCO(3)(-) in relation to phosphate, and, in cross section, a sevenfold depletion of phosphate in relation to HCO(3)(-). Thus acute hydrogen ion buffering by bone involves preferential dissolution of surface HCO(3)(-) and of cross-sectional phosphate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic acidosis-induced alteration in bone bicarbonate and phosphate.

Chronic metabolic acidosis increases urinary calcium excretion without altering intestinal calcium absorption, suggesting that bone mineral is the source of the additional urinary calcium. In vivo and in vitro studies have shown that metabolic acidosis causes a loss of mineral calcium while buffering the additional hydrogen ions. Previously, we studied changes in femoral, midcortical ion concen...

متن کامل

Effect of Sodium Bicarbonate and Sodium Chloride on Renal and Hematologic Factors in Patients with Glucose-6-phosphate Dehydrogenase Deficiency

Background: Sodium bicarbonate serum therapy is used for compensation bicarbonate lost and increasing blood pH in metabolic acidosis caused by severe anemia in patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of present study was comparison the effect of serum therapy using two different serums (serum with bicarbonate and without bicarbonate) on some renal and hematolo...

متن کامل

Metabolic acidosis of chronically hemodialyzed patients.

Metabolic acidosis is a condition that is commonly encountered in both chronic renal failure and in end-stage renal disease. Metabolic acidosis is associated with many adverse effects: negative nitrogen balance, increased protein decomposition, anorexia, fatigue, bone lesions, impaired function of the cardiovascular system, impaired function of the gastrointestinal system, hormonal disturbances...

متن کامل

Metabolic and endocrine effects of metabolic acidosis in humans.

Metabolic acidosis is an important acid-base disturbance in humans. It is characterised by a primary decrease in body bicarbonate stores and is known to induce multiple endocrine and metabolic alterations. Metabolic acidosis induces nitrogen wasting and, in humans, depresses protein metabolism. The acidosis-induced alterations in various endocrine systems include decreases in IGF-1 levels due t...

متن کامل

Metabolic acidosis-induced hypercalcemia in an azotemic patient with primary hyperparathyroidism

A 58-year-old man with Stage 3b chronic kidney disease and primary hyperparathyroidism treated with cinacalcet was admitted for acute cholecystitis. A cholecystostomy tube was placed, estimated glomerular filtration rate decreased, metabolic acidosis developed and ionized calcium increased from 1.33 to 1.76 mM despite cinacalcet administration. A sodium bicarbonate infusion corrected the metabo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 283 5  شماره 

صفحات  -

تاریخ انتشار 2002