Neural-network Modelling of Bayesian Learning and Inference
نویسندگان
چکیده
We propose a modular neural-network structure for implementing the Bayesian framework for learning and inference. Our design has three main components, two for computing the priors and likelihoods based on observations and one for applying Bayes’ rule. Through comprehensive simulations we show that our proposed model succeeds in implementing Bayesian learning and inference. We also provide a novel explanation of base-rate neglect, the most well-documented deviation from Bayes’ rule, by modelling it as a weight decay mechanism which increases entropy.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملThe Language of Uncertainty | Uncertainty in Deep Learning
To formalise our discussion of model uncertainty we will rely on probabilistic modelling, and more specifically on Bayesian modelling. Bayesian probability theory offers us the machinery we need to develop our tools. Together with techniques for approximate inference in Bayesian models, in the next chapter we will present the main results of this work. But prior to that, let us review the main ...
متن کاملArtificial intelligence-based approaches for multi-station modelling of dissolve oxygen in river
ABSTRACT: In this study, adaptive neuro-fuzzy inference system, and feed forward neural network as two artificial intelligence-based models along with conventional multiple linear regression model were used to predict the multi-station modelling of dissolve oxygen concentration at the downstream of Mathura City in India. The data used are dissolved oxygen, pH, biological oxygen demand and water...
متن کاملOn Modern Deep Learning and Variational Inference
Bayesian modelling and variational inference are rooted in Bayesian statistics, and easily benefit from the vast literature in the field. In contrast, deep learning lacks a solid mathematical grounding. Instead, empirical developments in deep learning are often justified by metaphors, evading the unexplained principles at play. It is perhaps astonishing then that most modern deep learning model...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کامل