A Better Strategy of Discovering Link-Pattern Based Communities by Classical Clustering Methods
نویسندگان
چکیده
The definition of a community in social networks varies with applications. To generalize different types of communities, the concept of linkpattern based community was proposed in a previous study to group nodes into communities, where the nodes in a community have similar intra-community and inter-community interaction behaviors. In this paper, by defining centroid of a community, a distance function is provided to measure the similarity between the link pattern of a node and the centroid of a community. The problem of discovering link-pattern based communities is transformed into a data clustering problem on nodes for minimizing a given objective function. By extending the partitioning methods of cluster analysis, two algorithm named G-LPC and KM-LPC are proposed to solve the problem. The experiment results show that KM-LPC outperforms the previous work on the efficiency, the memory utilization, and the clustering result. Besides, G-LPC achieves the best result approaching the optimal solution.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملLink Clustering with Extended Link Similarity and EQ Evaluation Division
Link Clustering (LC) is a relatively new method for detecting overlapping communities in networks. The basic principle of LC is to derive a transform matrix whose elements are composed of the link similarity of neighbor links based on the Jaccard distance calculation; then it applies hierarchical clustering to the transform matrix and uses a measure of partition density on the resulting dendrog...
متن کاملCommunity Discovery in Social Networks via Heterogeneous Link Association and Fusion
Discovering social communities of web users through clustering analysis of heterogeneous link associations has drawn much attention. However, existing approaches typically require the number of clusters a prior, do not address the weighting problem for fusing heterogeneous types of links and have a heavy computational cost. In this paper, we explore the feasibility of a newly proposed heterogen...
متن کاملDiscovering link communities in complex networks by exploiting link dynamics
Discovery of communities in complex networks is a fundamental data analysis problem with applications in various domains. Most of the existing approaches have focused on discovering communities of nodes, while recent studies have shown great advantages and utilities of the knowledge of communities of links in networks. From this new perspective, we propose a link dynamics based algorithm, calle...
متن کاملA Stochastic Model for Detecting Heterogeneous Link Communities in Complex Networks
Discovery of communities in networks is a fundamental data analysis problem. Most of the existing approaches have focused on discovering communities of nodes, while recent studies have shown great advantages and utilities of the knowledge of communities of links. Stochastic models provides a promising class of techniques for the identification of modular structures, but most stochastic models m...
متن کامل