An umbral setting for cumulants and factorial moments

نویسندگان

  • Elvira Di Nardo
  • Domenico Senato
چکیده

We provide an algebraic setting for cumulants and factorial moments through the classical umbral calculus. Main tools are the compositional inverse of the unity umbra, connected with the logarithmic power series, and a new umbra here introduced, the singleton umbra. Various formulae are given expressing cumulants, factorial moments and central moments by umbral functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the computation of classical, boolean and free cumulants

This paper introduces a simple and computationally efficient algorithm for conversion formulae between moments and cumulants. The algorithm provides just one formula for classical, boolean and free cumulants. This is realized by using a suitable polynomial representation of Abel polynomials. The algorithm relies on the classical umbral calculus, a symbolic language introduced by Rota and Taylor...

متن کامل

Asymptotic Normality Through Factorial Cumulants and Partition Identities

In the paper we develop an approach to asymptotic normality through factorial cumulants. Factorial cumulants arise in the same manner from factorial moments as do (ordinary) cumulants from (ordinary) moments. Another tool we exploit is a new identity for 'moments' of partitions of numbers. The general limiting result is then used to (re-)derive asymptotic normality for several models including ...

متن کامل

Strong Oscillations of Cumulants of Photon Distribution Function in Slightly Squeezed States

The cumulants and factorial moments of photon distribution for squeezed and correlated light are calculated in terms of Chebyshev, Legendre and Laguerre polynomials. The phenomenon of strong oscillations of the ratio of the cumulant to factorial moment is found. Running title: Oscillations of cumulants in squeezed states.

متن کامل

Generalized moments and cumulants for samples of fixed multiplicity.

Factorial moments and cumulants are usually defined with respect to the unconditioned Poisson process. Conditioning a sample by selecting events of a given overall multiplicity N necessarily introduces correlations. By means of Edgeworth expansions, we derive generalized cumulants which define correlations with respect to an arbitrary process rather than just the Poisson case. The results are a...

متن کامل

Inverse moments of univariate discrete distributions via the Poisson expansion

In this note we present a series expansion of inverse moments of a non-negative discrete random variate in terms of its factorial cumulants, based on the Poisson-Charlier expansion of a discrete distribution. We apply the general method to the positive binomial distribution and obtain a convergent series for its inverse moments with an error residual that is uniformly bounded on the entire inte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2006