Complexity of holomorphic maps from the complex unit ball to classical domains

نویسندگان

  • Ming Xiao
  • Yuan Yuan
چکیده

We study the complexity of holomorphic isometries and proper maps from the complex unit ball to type IV classical domains. We investigate on degree estimates of holomorphic isometries and holomorphic maps with minimum target dimension. We also construct a real-parameter family of mutually inequivalent holomorphic isometries from the unit ball to type IV domains. We also provide examples of non-isometric proper holomorphic maps from the complex unit ball to classical domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Holomorphic maps from the complex unit ball to Type IV classical domains

The first part of this paper is devoted to establish new rigidity results for proper holomorphic maps from the complex unit ball to higher rank bounded symmetric domains. The rigidity properties have been extensively studied in the past decades for proper holomorphic maps F : Ω1 → Ω2, between bounded symmetric domains Ω1,Ω2. The pioneer works are due to Poincaré [P] and later to Alexander [Al] ...

متن کامل

Composition operators between growth spaces‎ ‎on circular and strictly convex domains in complex Banach spaces‎

‎Let $\Omega_X$ be a bounded‎, ‎circular and strictly convex domain in a complex Banach space $X$‎, ‎and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$‎. ‎The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$‎ ‎such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$‎ ‎for some constant $C>0$‎...

متن کامل

On a Linearity Problem for Proper Holomorphic Maps between Balls in Complex Spaces of Different Dimensions

In an important development of several complex variables, Poincaré [26] discovered that any biholomorphic map between two open pieces of the unit sphere in C2 is the restriction of a certain automorphism of B2, the unit two-ball in C2. This phenomenon fails obviously in one complex variable and reveals a strong rigidity property of holomorphic mappings in several variables. Later, Tanaka, etc (...

متن کامل

Holomorphic Mappings from the Ball and Polydisc

Introduction. The holomorphic self-homeomorphisms ("automorphisms") of the open unit ball B, in ~L TM have long been known [1] they are given by certain rational functions which are holomorphic on a neighborhood of Bn and induce a homeomorphism of the boundary, bB,, of the ball. Our first result can be viewed as a local characterization of these automorphisms: For n > 1, a nonconstant holomorph...

متن کامل

Holomorphic Isometries from the Unit Ball into Symmetric Domains

We construct isometric holomorphic embeddings of the unit ball into higher rank symmetric domains, first discovered by Mok, in an explicit way using Jordan triple systems, and prove uniqueness results for domains of rank 2, including the exceptional domain of dimension 16.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016