Complexity of holomorphic maps from the complex unit ball to classical domains
نویسندگان
چکیده
We study the complexity of holomorphic isometries and proper maps from the complex unit ball to type IV classical domains. We investigate on degree estimates of holomorphic isometries and holomorphic maps with minimum target dimension. We also construct a real-parameter family of mutually inequivalent holomorphic isometries from the unit ball to type IV domains. We also provide examples of non-isometric proper holomorphic maps from the complex unit ball to classical domains.
منابع مشابه
Holomorphic maps from the complex unit ball to Type IV classical domains
The first part of this paper is devoted to establish new rigidity results for proper holomorphic maps from the complex unit ball to higher rank bounded symmetric domains. The rigidity properties have been extensively studied in the past decades for proper holomorphic maps F : Ω1 → Ω2, between bounded symmetric domains Ω1,Ω2. The pioneer works are due to Poincaré [P] and later to Alexander [Al] ...
متن کاملComposition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملOn a Linearity Problem for Proper Holomorphic Maps between Balls in Complex Spaces of Different Dimensions
In an important development of several complex variables, Poincaré [26] discovered that any biholomorphic map between two open pieces of the unit sphere in C2 is the restriction of a certain automorphism of B2, the unit two-ball in C2. This phenomenon fails obviously in one complex variable and reveals a strong rigidity property of holomorphic mappings in several variables. Later, Tanaka, etc (...
متن کاملHolomorphic Mappings from the Ball and Polydisc
Introduction. The holomorphic self-homeomorphisms ("automorphisms") of the open unit ball B, in ~L TM have long been known [1] they are given by certain rational functions which are holomorphic on a neighborhood of Bn and induce a homeomorphism of the boundary, bB,, of the ball. Our first result can be viewed as a local characterization of these automorphisms: For n > 1, a nonconstant holomorph...
متن کاملHolomorphic Isometries from the Unit Ball into Symmetric Domains
We construct isometric holomorphic embeddings of the unit ball into higher rank symmetric domains, first discovered by Mok, in an explicit way using Jordan triple systems, and prove uniqueness results for domains of rank 2, including the exceptional domain of dimension 16.
متن کامل