Optimal Day-Ahead Scheduling of a Smart Distribution Grid Considering Reactive Power Capability of Distributed Generation
نویسندگان
چکیده
Abstract: In the traditional paradigm, large power plants provide active and reactive power required for the transmission system and the distribution network purchases grid power from it. However, with more and more distributed energy resources (DERs) connected at distribution levels, it is necessary to schedule DERs to meet their demand and participate in the electricity markets at the distribution level in the near future. This paper proposes a comprehensive operational scheduling model to be used in the distribution management system (DMS). The model aims to determine optimal decisions on active elements of the network, distributed generations (DGs), and responsive loads (RLs), seeking to minimize the day-ahead composite economic cost of the distribution network. For more detailed simulation, the composite cost includes the aspects of the operation cost, emission cost, and transmission loss cost of the network. Additionally, the DMS effectively utilizes the reactive power support capabilities of wind and solar power integrated in the distribution, which is usually neglected in previous works. The optimization procedure is formulated as a nonlinear combinatorial problem and solved with a modified differential evolution algorithm. A modified 33-bus distribution network is employed to validate the satisfactory performance of the proposed methodology.
منابع مشابه
Reactive Power Pricing Simultaneous Using Spot and Bilateral Market Models Considering Opportunity Cost
Reactive power as a utility of ancillary service in restructured environment is supplied by Independent System Operator (ISO). Due to the particular importance of optimal pricing strategy in the power market, the study aims to investigate this problem more closely. To this end, first the problems of restructuring, reactive power generation and its associated costs thereof were reviewed and diff...
متن کاملDay-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle-to-Grid (V2G). This method consid...
متن کاملIncorporation of Demand Response Programs and Wind Turbines in Optimal Scheduling of Smart Distribution Networks: A Case Study
Smart distribution networks (SDNs) plays a significant role in future power networks. Accordingly, the optimal scheduling of such networks, which include planning of consumers and production sections, inconsiderably concerned in recent research studies. In this paper, the optimal planning of energy and reserve of SDNs has been studied. Technical constraints of distribution network and power gen...
متن کاملStochastic Joint Optimal Distributed Generation Scheduling and Distribution Feeder Reconfiguration of Microgrids Considering Uncertainties Modeled by Copula-Based Method
Using distributed generations (DGs) with optimal scheduling and optimal distribution feeder reconfiguration (DFR) are two aspects that can improve efficiency as well as technical and economic features of microgrids (MGs). This work presents a stochastic copula scenario-based framework to jointly carry out optimal scheduling of DGs and DFR. This framework takes into account non-dispatchable and ...
متن کاملFlexible Scheduling of Active Distribution Networks for Market Participation with Considering DGs Availability
The availability of sufficient and economic online capacity to support the network while encountering disturbances and failures leading to supply and demand imbalance has a crucial role in today distribution networks with high share of Distributed Energy Resources (DERs), especially Renewable Energy Resources (RESs). This paper proposes a two-stage decision making framework for the Distribution...
متن کامل