An iterative approach for cone complementarity problems for nonsmooth dynamics
نویسندگان
چکیده
Aiming at a fast and robust simulation of large multibody systems with contacts and friction, this work presents a novel method for solving large cone complementarity problems by means of a fixed-point iteration. The method is an extension of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric convex linear complementarity problems. The method is proved to be convergent under fairly standard assumptions and is shown by our tests to scale well up to 500,000 contact points and more than two millions of unknowns.
منابع مشابه
Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone
In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.
متن کاملA matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics
This paper proposes an iterative method that can simulate mechanical systems featuring a large number of contacts and joints between rigid bodies. The numerical method behaves as a contractive mapping that converges to the solution of a cone complementarity problem by means of iterated fixed-point steps with separable projections onto convex manifolds. Since computational speed and robustness a...
متن کاملA Positive Algorithm for the Nonlinear Complementarity Problem
In this paper, the authors describe and establish the convergence of a new iterative method for solving the (nonmonotone) nonlinear complementarity problem (NCP). The method utilizes ideas from two distinct approaches for solving this problem and combines them into one unified framework. One of these is the infeasible-interior-point approach that computes an approximate solution to the NCP by s...
متن کاملOn the Local Convergence of Semismooth Newton Methods for Linear and Nonlinear Second-Order Cone Programs Without Strict Complementarity
The optimality conditions of a nonlinear second-order cone program can be reformulated as a nonsmooth system of equations using a projection mapping. This allows the application of nonsmooth Newton methods for the solution of the nonlinear second-order cone program. Conditions for the local quadratic convergence of these nonsmooth Newton methods are investigated. Related conditions are also giv...
متن کاملAnalysis of nonsmooth vector-valued functions associated with second-order cones
Let Kn be the Lorentz/second-order cone in R. For any function f from R to R, one can define a corresponding function f soc(x) on R by applying f to the spectral values of the spectral decomposition of x ∈ R with respect to Kn. We show that this vector-valued function inherits from f the properties of continuity, (local) Lipschitz continuity, directional differentiability, Fréchet differentiabi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comp. Opt. and Appl.
دوره 47 شماره
صفحات -
تاریخ انتشار 2010