Parameter Adaptation in Ant Colony Optimization

نویسندگان

  • Thomas Stützle
  • Manuel López-Ibáñez
  • Paola Pellegrini
  • Michael Maur
  • Marco Antonio Montes de Oca
  • Mauro Birattari
  • Marco Dorigo
چکیده

This chapter reviews the approaches that have been studied for the online adaptation of the parameters of ant colony optimization (ACO) algorithms, that is, the variation of parameter settings while solving an instance of a problem. We classify these approaches according to the main classes of online parameter-adaptation techniques. One conclusion of this review is that the available approaches do not exploit an in-depth understanding of the effect of individual parameters on the behavior of ACO algorithms. Therefore, this chapter also presents results of an empirical study of the solution quality over computation time for Ant Colony System and MAX-MIN Ant System, two well-known ACO algorithms. The first part of this study provides insights on the behaviour of the algorithms in dependence of fixed parameter settings. One conclusion is that the best fixed parameter settings of MAX-MIN Ant System depend strongly on the available computation time. The second part of the study uses these insights to propose simple, pre-scheduled parameter variations. Our experimental results show that such pre-scheduled parameter variations can dramatically improve the anytime performance of MAX-MIN Ant System. Thomas Stützle, Manuel López-Ibáñez, Marco Montes de Oca, Mauro Birattari, Marco Dorigo IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium e-mail: {stuetzle,manuel.lopez-ibanez,mmontes,mbiro,mdorigo}@ulb.ac.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic parameter adaptation in Ant Colony Optimization using a fuzzy system for TSP problems

Fuzzy logic has been a useful tool for modeling complex problems, with the use of fuzzy variables and fuzzy rules, and in this paper we use a fuzzy system for parameter adaptation in the Ant Colony Optimization (ACO metaheuristic). In this case we perform the dynamic adaptation of Alpha and Rho parameters; this is to control the abilities of ACO to perform a global and local search. Simulation ...

متن کامل

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Gradient-based Ant Colony Optimization for Continuous Spaces

A novel version of Ant Colony Optimization (ACO) algorithms for solving continuous space problems is presented in this paper. The basic structure and concepts of the originally reported ACO are preserved and adaptation of the algorithm to the case of continuous space is implemented within the general framework. The stigmergic communication is simulated through considering certain direction vect...

متن کامل

Min-max Vehicle Routing Problem Based on Ant Colony Algorithm

To minimize the length of travelling distance of the longest sub-route in vehicle routing problem, the max-min ant system with parameter adaptation is adopted, which can be applied to different datasets in practice. Routes are constructed by sequential and parallel methods for the customers with clustering and random distribution respectively. Since the behavior of ant colony algorithm depends ...

متن کامل

A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot

Ant Colony Optimization is a population-based meta-heuristic that exploits a form of past performance memory that is inspired by the foraging behavior of real ants. The behavior of the Ant Colony Optimization algorithm is highly dependent on the values defined for its parameters. Adaptation and parameter control are recurring themes in the field of bio-inspired optimization algorithms. The pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012