RHCG Suppresses Tumorigenicity and Metastasis in Esophageal Squamous Cell Carcinoma via Inhibiting NF-κB Signaling and MMP1 Expression
نویسندگان
چکیده
Background and Aims: Esophageal squamous cell carcinoma (ESCC), a major histologic subtype of esophageal cancer, is increasing in incidence, but the genetic underpinnings of this disease remain unexplored. The aim of this study is to identify the recurrent genetic changes, elucidate their roles and discover new biomarkers for improving clinical management of ESCC. Methods: Western blotting and immunohistochemistry were performed to detect the expression level of RHCG. Bisulfite genomic sequencing (BGS) and methylation-specific PCR (MSP) were used to study the methylation status in the promoter region of RHCG. The tumor-suppressive effect of RHCG was determined by both in-vitro and in-vivo assays. Affymetrix cDNA microarray was used to identify the underlying molecular mechanism. Results:RHCG was frequently downregulated in ESCCs, which was significantly correlated with poor differentiation (P = 0.001), invasion (P = 0.003), lymph node metastasis (P = 0.038) and poorer prognosis (P < 0.001). Demethylation treatment and bisulfite genomic sequencing analyses revealed that the downregulation of RHCG in both ESCC cell lines and clinical samples was associated with its promoter hypermethylation. Functional assays demonstrated that RHCG could inhibit clonogenicity, cell motility, tumor formation and metastasis in mice. Further study revealed that RHCG could stabilize IκB by decreasing its phosphorylation, and subsequently inhibit NF-κB/p65 activation by blocking the nuclear translocation of p65, where it acted as a transcription regulator for the upregulation of MMP1 expression. Conclusions: Our results support the notion that RHCG is a novel tumor suppressor gene that plays an important role in the development and progression of ESCC.
منابع مشابه
NKILA inhibits NF-κB signaling and suppresses tumor metastasis
The long non-coding RNA (lncRNA) NKILA (nuclear transcription factor NF-κB interacting lncRNA) functions as a suppressor in human breast cancer and tongue cancer. However, the clinical significance and biological roles of NKILA in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we showed that NKILA was downregulated in ESCC tissues and cancer cells compared with their n...
متن کاملژنتیک مولکولی و ژن درمانی در سرطان مری: مقاله مروری
Background: With approximately 386,000 deaths per year, esophageal cancer is the 6th most common cause of death due to cancer in the world. This cancer, like any other cancer, is the outcome of genetic alterations or environmental factors such as tobacco smoke and gastro-esophageal reflux. Tobacco smoking is a major etiologic factor for esophageal squamous cell carcinoma in western countries, a...
متن کاملThe protective effect of propofol on hydrogen peroxide-induced human esophageal carcinoma via blocking the Wnt/β-catenin signaling pathway
Objective(s): To analyze the potential influences of propofol on the oxidative stress of H2O2-induced human esophageal squamous cell carcinoma (ESCC) Eca109 cell through mediating the Wnt/β-catenin signaling pathway.Materials and Methods: Eca109 cells were classified into 5 groups: Control group, H2O2 group, Propofol + H2O2 group, Dkk1 (Dickkopf-1, Wnt/β-catenin pathway antagonist) + H2O2 group...
متن کاملmiR-145-5p Suppresses Tumor Cell Migration, Invasion and Epithelial to Mesenchymal Transition by Regulating the Sp1/NF-κB Signaling Pathway in Esophageal Squamous Cell Carcinoma
MicroRNAs (miRNAs) play important roles in the progression of human cancer. Although previous reports have shown that miR-145-5p is down-regulated in esophageal squamous cell carcinoma (ESCC), the roles and mechanisms of down-regulation of miR-145-5p in ESCC are still largely unknown. Using microRNA microarray and Gene Expression Omnibus (GEO) datasets, we confirmed that miR-145-5p was down-reg...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کامل