Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance
نویسندگان
چکیده
Tyrosine kinase inhibitors (TKIs) are effective therapies for leukaemia. Alzheimer is a neurodegenerative disease characterized by accumulation of β-amyloid (plaques) and hyper-phosphorylated Tau (tangles). Here we show that AD animals have high levels of insoluble parkin and decreased parkin-Beclin-1 interaction, while peripheral administration of TKIs, including Nilotinib and Bosutinib, increases soluble parkin leading to amyloid clearance and cognitive improvement. Blocking Beclin-1 expression with shRNA or parkin deletion prevents tyrosine kinase (TK) inhibition-induced amyloid clearance, suggesting that functional parkin-Beclin-1 interaction mediates amyloid degradation. Isolation of autophagic vacuoles (AVs) in AD mouse brain shows accumulation of parkin and amyloid, consistent with previous results in AD brains, while Bosutinib and Nilotinib increase parkin-Beclin-1 interaction and result in protein deposition in the lysosome. These data suggest that decreased parkin solubility impedes parkin-Beclin-1 interaction and amyloid clearance. We identified two FDA-approved anti-cancer drugs as potential treatment for AD.
منابع مشابه
Ubiquitination Increases Parkin Activity to Promote Autophagic α-Synuclein Clearance
Parkinson's disease (PD) is a movement disorder associated with genetic and age related causes. Although autosomal recessive early onset PD linked to parkin mutations does not exhibit α-Synuclein accumulation, while autosomal dominant and sporadic PD manifest with α-Synuclein inclusions, loss of dopaminergic substantia nigra neurons is a common denominator in PD. Here we show that decreased par...
متن کاملROCK1 Is Associated with Alzheimer’s Disease-Specific Plaques, as well as Enhances Autophagosome Formation But not Autophagic Aβ Clearance
Alzheimer's disease (AD) is the most prevalent form of late-life dementia in the population, characterized by amyloid plaque formation and increased tau deposition, which is modulated by Rho-associated coiled-coil kinase 1 (ROCK1). In this study, we further analyze whether ROCK1 regulates the metabolism of amyloid precursor protein (APP). We show that ROCK1 is colocalized with mature amyloid-β ...
متن کاملParkin-mediated reduction of nuclear and soluble TDP-43 reverses behavioral decline in symptomatic mice.
The transactivation DNA-binding protein (TDP)-43 binds to thousands of mRNAs, but the functional outcomes of this binding remain largely unknown. TDP-43 binds to Park2 mRNA, which expresses the E3 ubiquitin ligase parkin. We previously demonstrated that parkin ubiquitinates TDP-43 and facilitates its translocation from the nucleus to the cytoplasm. Here we used brain penetrant tyrosine kinase i...
متن کاملActivation of mTOR: a culprit of Alzheimer’s disease?
Alzheimer's disease (AD) is characterized by cognitive impairment in clinical presentation, and by β-amyloid (Aβ) production and the hyper-phosphorylation of tau in basic research. More highlights demonstrate that the activation of the mammalian target of rapamycin (mTOR) enhances Aβ generation and deposition by modulating amyloid precursor protein (APP) metabolism and upregulating β- and γ-sec...
متن کاملComplex Inhibitory Effects of Nitric Oxide on Autophagy
Autophagy, a major degradation process for long-lived and aggregate-prone proteins, affects various human processes, such as development, immunity, cancer, and neurodegeneration. Several autophagy regulators have been identified in recent years. Here we show that nitric oxide (NO), a potent cellular messenger, inhibits autophagosome synthesis via a number of mechanisms. NO impairs autophagy by ...
متن کامل