SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress.
نویسندگان
چکیده
Low-temperature stress represents one of the principal limitations affecting the distribution and productivity of many plant species, including crops such as sweetpotato. Transgenic sweetpotato (Ipomoea batatas L. cv. Yulmi) plants expressing the soybean cold-inducible zinc finger protein (SCOF-1) under control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SF plants), were developed and evaluated for enhanced tolerance to low-temperature conditions. Following 4 °C treatment of SF plants, SCOF-1 expression correlated positively with tolerance to low-temperature stress at the leaf disc level. Increased SCOF-1 expression also correlated with enhanced tolerance to different low-temperature treatments at the whole plant level. SF plants treated with low-temperature stress (4 or 10 °C for 30 h) exhibited less of a reduction in photosynthetic activity and lipid peroxidation levels than non-transgenic (NT) plants. Furthermore, the photosynthetic activity and lipid peroxidation levels of SF plants recovered to near pre-stress levels after 12 h of recovery at 25 °C. In contrast, these activities remained at a reduced level in NT plants after the same recovery period. Thus, this study has shown that low-temperature stress in sweetpotato can be efficiently modulated by overexpression of SCOF-1.
منابع مشابه
An Ipomoea batatas Iron-Sulfur Cluster Scaffold Protein Gene, IbNFU1, Is Involved in Salt Tolerance
Iron-sulfur cluster biosynthesis involving the nitrogen fixation (Nif) proteins has been proposed as a general mechanism acting in various organisms. NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses. An iron-sulfur cluster scaffold protein gene, IbNFU1, was isolated from a salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line LM79 in our...
متن کاملA Novel α/β-Hydrolase Gene IbMas Enhances Salt Tolerance in Transgenic Sweetpotato
Salt stress is one of the major environmental stresses in agriculture worldwide and affects crop productivity and quality. The development of crops with elevated levels of salt tolerance is therefore highly desirable. In the present study, a novel maspardin gene, named IbMas, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbMas contains maspardin domain and b...
متن کاملTransgenic Alfalfa Plants Expressing the Sweetpotato Orange Gene Exhibit Enhanced Abiotic Stress Tolerance
Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stre...
متن کاملStudies on Salt Tolerance of Transgenic Sweetpotato which harbors two Genes Expressing CuZn Superoxide Dismutase and Ascorbate Peroxidase with the Stress-inducible SWPA2 Promoter
In this study, some physiological indexes of leaves in transgenic sweetpotato (Ipomoea batatas L. cv. Yulmi), which harbors two genes CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes, with the stress-inducible SWPA2 promoter were evaluated under different concentrations of NaCl treatment. The results showed that physiological indexes were no remarkable differences withou...
متن کاملResponses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology and biochemistry : PPB
دوره 49 12 شماره
صفحات -
تاریخ انتشار 2011