Hypoxia-induced collagen crosslinking as a mechanism for enhancing mechanical properties of engineered articular cartilage.
نویسندگان
چکیده
OBJECTIVE The focus of tissue engineering of neocartilage has traditionally been on enhancing extracellular matrix and thus biomechanical properties. Emphasis has been placed on the enhancement of collagen type and quantity, and, concomitantly, tensile properties. The objective of this study was to improve crosslinking of the collagen network by testing the hypothesis that hypoxia could promote pyridinoline (PYR) crosslinks and, thus, improve neocartilage's tensile properties. METHODS Chondrocyte expression of lysyl oxidase (LOX), an enzyme responsible for the formation of collagen PYR crosslinks, was first assessed pre- and post- hypoxia application. Then, the mechanical properties of self-assembled neocartilage constructs were measured, after 4 weeks of culture, for groups exposed to 4% O2 at different initiation times and durations, i.e., during the 1st and 3rd weeks, 3rd and 4th weeks, 4th week only, continuously after cell seeding, or never. RESULTS Results showed that LOX gene expression was upregulated ∼20-fold in chondrocytes in response to hypoxia. Hypoxia applied during the 3rd and 4th weeks significantly increased PYR crosslinks without affecting collagen content. Excitingly, neocartilage tensile properties were increased ∼2-fold. It should be noted that these properties exhibited a distinct temporal dependence to hypoxia exposure, since upregulation of these properties was due to hypoxia applied only during the 3rd and 4th weeks. CONCLUSION These data elucidate the role of hypoxia-mediated upregulation of LOX and subsequent increases in PYR crosslinks in engineered cartilage. These results hold promise toward applying hypoxia at precise time points to promote tensile integrity and direct construct maturation.
منابع مشابه
Beneficial Effects of Exogenous Crosslinking Agents on Self-assembled Tissue Engineered Cartilage Construct Biomechanical Properties.
BACKGROUND As articular cartilage is unable to repair itself, there is a tremendous clinical need for a tissue engineered replacement tissue. Current tissue engineering efforts using the self-assembly process have demonstrated promising results, but the biomechanical properties remain at roughly 50% of native tissue. METHODOLOGY/PRINCIPAL FINDINGS The objective of this study was to determine ...
متن کاملDeveloping functional musculoskeletal tissues through hypoxia and lysyl oxidase-induced collagen cross-linking.
The inability to recapitulate native tissue biomechanics, especially tensile properties, hinders progress in regenerative medicine. To address this problem, strategies have focused on enhancing collagen production. However, manipulating collagen cross-links, ubiquitous throughout all tissues and conferring mechanical integrity, has been underinvestigated. A series of studies examined the effect...
متن کاملTemporal assessment of ribose treatment on self-assembled articular cartilage constructs.
Articular cartilage cannot repair itself in response to degradation from injury or osteoarthritis. As such, there is a substantial clinical need for replacements of damaged cartilage. Tissue engineering aims to fulfill this need by developing replacement tissues in vitro. A major goal of cartilage tissue engineering is to produce tissues with robust biochemical and biomechanical properties. One...
متن کاملInduced Collagen Cross-Links Enhance Cartilage Integration
Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage surfaces. To examine these hypotheses...
متن کاملDigoxin and adenosine triphosphate enhance the functional properties of tissue-engineered cartilage.
Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca(2+)-modulating agents have been used to enhance matrix synthesis and biomechanic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Osteoarthritis and cartilage
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2013