A Connected Sum Formula for the Su(3) Casson Invariant

نویسنده

  • HANS U. BODEN
چکیده

We provide a formula for the SU(3) Casson invariant for 3-manifolds given as the connected sum of two integral homology 3-spheres.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Connected Sum Formula for the Su ( 3 ) Casson Invariant 3

We provide a formula for the SU(3) Casson invariant for 3-manifolds given as the connected sum of two integral homology 3-spheres.

متن کامل

M ay 2 00 2 A CONNECTED SUM FORMULA FOR THE SU ( 3 ) CASSON INVARIANT HANS

We provide a formula for the SU(3) Casson invariant for 3-manifolds given as the connected sum of two integral homology 3-spheres.

متن کامل

A Connect Sum Formula for Su(3) Casson Invariants

We provide a formula for the SU(3) Casson invariant for 3-manifolds given as the connected sum of two integral homology 3-spheres.

متن کامل

The Su(3) Casson Invariant for 3-manifolds Split along a 2-sphere or a 2-torus

We describe the deenition of the SU(3) Casson invariant and outline an argument which determines the contribution of certain types of components of the at moduli space. Two applications of these methods are detailed. The rst is a connect sum formula for the SU(3) Casson invariant 3]. The second presents a strategy for computing the SU(3) Casson invariant for certain graph manifolds.

متن کامل

The SU(3) Casson invariant of spliced sums

as a S1-valued Morse function on A/G, A being the space of SU(2) connections onM and G the group of gauge transformations. Taubes realized that the Hessian of the Chern-Simons invariant and the odd signature operator coupled to the same path of SU(2) connections have the same spectral flow. Using Taubes’s point of view, an SU(3) Casson invariant τ was introduced by [1] and later refined by [3],...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999