Confidence Estimation in Structured Prediction
نویسندگان
چکیده
1
منابع مشابه
Non-Bayesian Estimation and Prediction under Weibull Interval Censored Data
In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...
متن کاملIRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES Confidence Estimation in Structured Prediction
Structured classification tasks such as sequence labeling and dependency parsing have seen much interest by the Natural Language Processing and the machine learning communities. Several online learning algorithms were adapted for structured tasks such as Perceptron, PassiveAggressive and the recently introduced Confidence-Weighted learning . These online algorithms are easy to implement, fast t...
متن کاملConfidence in Structured-Prediction Using Confidence-Weighted Models
Confidence-Weighted linear classifiers (CW) and its successors were shown to perform well on binary and multiclass NLP problems. In this paper we extend the CW approach for sequence learning and show that it achieves state-of-the-art performance on four noun phrase chucking and named entity recognition tasks. We then derive few algorithmic approaches to estimate the prediction’s correctness of ...
متن کاملConfidence Estimation of the State Predictor Method
Pervasive resp. ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the appliance foresees the user’s desires. By means of context prediction systems get ready for future human activities and can act proactively. Predictions, however, are never 100% correct. In case of unreliable prediction results it is sometimes better to ...
متن کاملStructured Prediction of 3D Human Pose with Deep Neural Networks
Most recent approaches to monocular 3D pose estimation rely on Deep Learning. They either train a Convolutional Neural Network to directly regress from image to 3D pose, which ignores the dependencies between human joints, or model these dependencies via a max-margin structured learning framework, which involves a high computational cost at inference time. In this paper, we introduce a Deep Lea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1111.1386 شماره
صفحات -
تاریخ انتشار 2011