Developmental arrest of T cells in Rpl22-deficient mice is dependent upon multiple p53 effectors.
نویسندگان
چکیده
αβ and γδ lineage T cells are thought to arise from a common CD4(-)CD8(-) progenitor in the thymus. However, the molecular pathways controlling fate selection and maturation of these two lineages remain poorly understood. We demonstrated recently that a ubiquitously expressed ribosomal protein, Rpl22, is selectively required for the development of αβ lineage T cells. Germline ablation of Rpl22 impairs development of αβ lineage, but not γδ lineage, T cells through activation of a p53-dependent checkpoint. In this study, we investigate the downstream effectors used by p53 to impair T cell development. We found that many p53 targets were induced in Rpl22(-/-) thymocytes, including miR-34a, PUMA, p21(waf), Bax, and Noxa. Notably, the proapoptotic factor Bim, while not a direct p53 target, was also strongly induced in Rpl22(-/-) T cells. Gain-of-function analysis indicated that overexpression of miR-34a caused a developmental arrest reminiscent of that induced by p53 in Rpl22-deficient T cells; however, only a few p53 targets alleviated developmental arrest when individually ablated by gene targeting or knockdown. Co-elimination of PUMA and Bim resulted in a nearly complete restoration of development of Rpl22(-/-) thymocytes, indicating that p53-mediated arrest is enforced principally through effects on cell survival. Surprisingly, co-elimination of the primary p53 regulators of cell cycle arrest (p21(waf)) and apoptosis (PUMA) actually abrogated the partial rescue caused by loss of PUMA alone, suggesting that the G1 checkpoint protein p21(waf) facilitates thymocyte development in some contexts.
منابع مشابه
Developmental arrest of T cells in RpL22-deficient mice is dependent upon multiple p53 effectors1
αβ and γδ lineage T cells are thought to arise from a common CD4−CD8− progenitor in the thymus. However, the molecular pathways controlling fate selection and maturation of these two lineages remain poorly understood. We have demonstrated recently that a ubiquitously expressed ribosomal protein, Rpl22, is selectively required for the development of αβ lineage T cells. Germline ablation of Rpl22...
متن کاملRpl22 Loss Impairs the Development of B Lymphocytes by Activating a p53-Dependent Checkpoint.
Although ribosomal proteins facilitate the ribosome’s core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a ...
متن کاملCancer-mutated ribosome protein L22 (RPL22/eL22) suppresses cancer cell survival by blocking p53-MDM2 circuit
Several ribosomal proteins (RPs) in response to various ribosomal stressors have been shown to play a critical role in p53-dependent regulation of cell cycle arrest, apoptosis and tumor suppression. Here, we report ribosomal protein L22 (RPL22/eL22) as a novel p53 activator highly mutated (mostly deletion mutation) in various types of human cancers, but not essential for ribosomal biogenesis in...
متن کاملDNA damage-induced cellular senescence is sufficient to suppress tumorigenesis: a mouse model
Tumor suppressor p53-dependent apoptosis is critical in suppressing tumorigenesis. Previously, we reported that DNA double-strand breaks (DSBs) at the V(D)J recombination loci induced genomic instability in the developing lymphocytes of nonhomologous end-joining (NHEJ)-deficient, p53-deficient mice, which led to rapid lymphomagenesis. To test the ability of p53-dependent cell cycle arrest to su...
متن کاملWip1 phosphatase-deficient mice exhibit defective T cell maturation due to sustained p53 activation.
The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 187 2 شماره
صفحات -
تاریخ انتشار 2011