A generalized framework for nodal first derivative summation-by-parts operators
نویسندگان
چکیده
A generalized framework is presented that extends the classical theory of finite-difference summation-by-parts (SBP) operators to include a wide range of operators, where the main extensions are i) non-repeating interior point operators, ii) nonuniform nodal distribution in the computational domain, iii) operators that do not include one or both boundary nodes. Necessary and sufficient conditions are proven for the existence of nodal approximations to the first derivative with the SBP property. It is proven that the positivedefinite norm matrix of each SBP operator must be associated with a quadrature rule; moreover, given a quadrature rule there exists a corresponding SBP operator, where for diagonal-norm SBP operators the weights of the quadrature rule must be positive. The generalized framework gives a straightforward means of posing many known approximations to the first derivative as SBP operators; several are surveyed, such as discontinuous Galerkin discretizations based on the Legendre-Gauss quadrature points, and shown to be SBP operators. Moreover, the new framework provides a method for constructing SBP operators by starting from quadrature rules; this is illustrated by constructing novel SBP operators from known quadrature rules. To demonstrate the utility of the generalization, the Legendre-Gauss and Legendre-GaussRadau quadrature points are used to construct SBP operators that do not include one or both boundary nodes.
منابع مشابه
Generalized Summation-by-Parts Operators for the Second Derivative with Variable Coefficients
The comprehensive generalization of summation-by-parts of Del Rey Fernández et al. (J. Comput. Phys., 266, 2014) is extended to approximations of second derivatives with variable coefficients. This enables the construction of second-derivative operators with one or more of the following characteristics: i) non-repeating interior stencil, ii) nonuniform nodal distributions, and iii) exclusion of...
متن کاملGeneralized Summation by Parts Operators: Second Derivative and Time-Marching Methods
This paper describes extensions of the generalized summation-by-parts (GSBP) framework to the approximation of the second derivative with a variable coefficient and to time integration. GSBP operators for the second derivative lead to more efficient discretizations, relative to the classical finite-difference SBP approach, as they can require fewer nodes for a given order of accuracy. Similarly...
متن کاملOpportunities for efficient high-order methods based on the summation-by-parts property (Invited)
Summation-by-parts (SBP) operators are traditionally viewed as high-order finite-difference operators, but they can also be interpreted as finite-element operators with an implicit basis. Such an element-based perspective leads to several opportunities that we describe. The first is provided by generalized one-dimensional SBP operators, which maintain the desirable properties of classical SBP o...
متن کاملNew Diagonal-Norm Summation-by-Parts Operators for the First Derivative with Increased Order of Accuracy
In combination with simultaneous approximation terms, summation-by-parts (SBP) operators provide a flexible and efficient methodology that leads to consistent, conservative, and provably stable high-order discretizations. Traditional diagonal-norm SBP operators with a repeating interior point operator lead to solutions that have a global order of accuracy lower than the order of the interior po...
متن کاملA Unified Framework for Delineation of Ambulatory Holter ECG Events via Analysis of a Multiple-Order Derivative Wavelet-Based Measure
In this study, a new long-duration holter electrocardiogram (ECG) major events detection-delineation algorithm is described which operates based on the false-alarm error bounded segmentation of a decision statistic with simple mathematical origin. To meet this end, first three-lead holter data is pre-processed by implementation of an appropriate bandpass finite-duration impulse response (FIR) f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 266 شماره
صفحات -
تاریخ انتشار 2014