Magnetic susceptibility of the 2D Ising model on a finite lattice
نویسنده
چکیده
Form factor representation of the correlation function of the 2D Ising model on a cylinder is generalized to the case of arbitrary disposition of correlating spins. The magnetic susceptibility on a lattice, one of whose dimensions (N) is finite, is calculated in both paraand ferromagnetic regions of parameters of the model. The singularity structure of the susceptibility in the complex temperature plane at finite values of N and the thermodynamic limit N → ∞ are discussed.
منابع مشابه
بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهمکنش نزدیکترین همسایهها
The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...
متن کاملMagnetic Properties and Phase Transitions in a Spin-1 Random Transverse Ising Model on Simple Cubic Lattice
Within the effective-field theory with correlations (EFT), a transverse random field spin-1 Ising model on the simple cubic (z=6) lattice is studied. The phase diagrams, the behavior of critical points, transverse magnetization, internal energy, magnetic specific heat are obtained numerically and discussed for different values of p the concentration of the random transverse field.
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملOn Duality of Two-dimensional Ising Model on Finite Lattice
It is shown that the partition function of the 2d Ising model on the dual finite lattice with periodical boundary conditions is expressed through some specific combination of the partition functions of the model on the torus with corresponding boundary conditions. The generalization of the duality relations for the nonhomogeneous case is given. These relations are proved for the weakly nonhomog...
متن کاملCorrelation function of the two-dimensional Ising model on a finite lattice. II
We calculate the two-point correlation function and magnetic susceptibility in the anisotropic 2D Ising model on a lattice with one infinite and the other finite dimension, along which periodic boundary conditions are imposed. Using exact expressions for a part of lattice form factors, we propose the formulas for arbitrary spin matrix elements, thus providing a possibility to compute all multip...
متن کامل