Are Human Intestinal Eukaryotes Beneficial or Commensals?
نویسندگان
چکیده
Since the advent of microbiology, it has been well known that each human body hosts a multitude of microbes. The magnitude of our microbial system is best reflected by the widely discussed ratio of one human cell to ten microbes. Indeed, humans and other mammals live in a consortium composed of vast arrays of viruses (these are typically called the virome), archaea and bacteria (i.e., the microbiome), along with fungi and other uniand multicellular eukaryotes (protists and helminths, respectively) historically thought of as “parasites.” It was the advent of next generation sequencing (NGS) that first allowed deeper insight not only into the composition of this “microbial zoo” but also its dynamics in relation to age, diet, health, sex, and geographic location of the host. Attention has focused primarily on the bacterial microbiome, which constitutes the most abundant and diverse segment of the human intestinal ecosystem. However, we argue that eukaryotes play important, but largely unrecognized roles and that there is much to gain by turning our attention to eukaryotic members of the gut ecosystem.
منابع مشابه
Phylogenetic analysis of Escherichia coli strains isolated from human samples
Escherichia coli (E. coli) is a normal inhabitant of the gastrointestinal tract of vertebrates, including humans. Phylogenetic analysis has shown that E. coli is composed of four main phylogenetic groups (A, B1, B2 and D). Group A and B1 are generally associated with commensals, whereas group B2 is associated with extra-intestinal pathotypes. Most enteropathogenic isolates, however, are assigne...
متن کاملInflammatory disease caused by intestinal pathobionts.
Environmental and intrinsic factors that alter microbiota structure can trigger aberrant immune responses. The resulting states of dysbiosis take many forms characterized by overrepresentation of pro-inflammatory organisms and pathobionts and loss of beneficial commensals further aggravating the inflammatory state. The pathogenic potential of the dysbiotic community can be linked to specific or...
متن کاملStimulating cROSstalk between commensal bacteria and intestinal stem cells.
Commensal gut bacteria benefit their host in many ways, for instance by aiding digestion and producing vitamins. In a new study in The EMBO Journal, Jones et al (2013) report that commensal bacteria can also promote intestinal epithelial renewal in both flies and mice. Interestingly, among commensals this effect is most specific to Lactobacilli, the friendly bacteria we use to produce cheese an...
متن کاملMicrobial Eukaryotes in the Human Microbiome: Ecology, Evolution, and Future Directions
High throughput sequencing technology has opened a window into the vast communities of bacteria that live on and in humans, demonstrating tremendous variability, and that they play a large role in health and disease. The eukaryotic component of the human gut microbiome remains relatively unexplored with these methods, but turning these tools toward microbial eukaryotes in the gut will likely yi...
متن کاملRegulated virulence controls the ability of a pathogen to compete with the gut microbiota.
The virulence mechanisms that allow pathogens to colonize the intestine remain unclear. Here, we show that germ-free animals are unable to eradicate Citrobacter rodentium, a model for human infections with attaching and effacing bacteria. Early in infection, virulence genes were expressed and required for pathogen growth in conventionally raised mice but not germ-free mice. Virulence gene expre...
متن کامل