iSUMO - integrative prediction of functionally relevant SUMOylated proteins
نویسندگان
چکیده
Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) are essential for many eukaryotic cellular functions. Several large-scale experimental datasets and sequence-based predictions exist that identify SUMOylated proteins. However, the overlap between these datasets is small, suggesting many false positives with low functional relevance. Therefore, we applied machine learning techniques to a diverse set of large-scale SUMOylation studies combined with protein characteristics such as cellular function and protein-protein interactions, to provide integrated SUMO predictions for human and yeast cells (iSUMO). Protein-protein and protein-nucleic acid interactions prove to be highly predictive of protein SUMOylation, supporting a role of the modification in protein complex formation. We note the marked prevalence of SUMOylation amongst RNA-binding proteins. We predict 1,596 and 492 SUMO targets in human and yeast, respectively (5% false positive rate, FPR), which is five times more than what existing sequence-based tools predict at the same FPR. One third of the predictions are validated by an independent, high-quality dataset. iSUMO therefore represents a comprehensive SUMO prediction tool for human and yeast with a high probability for functional relevance of the predictions.. CC-BY-NC-ND 4.0 International license peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was not .
منابع مشابه
Proteome-wide identification of SUMO2 modification sites.
Posttranslational modification with small ubiquitin-like modifiers (SUMOs) alters the function of proteins involved in diverse cellular processes. SUMO-specific enzymes conjugate SUMOs to lysine residues in target proteins. Although proteomic studies have identified hundreds of sumoylated substrates, methods to identify the modified lysines on a proteomic scale are lacking. We developed a metho...
متن کاملStrategies to Identify Recognition Signals and Targets of SUMOylation
SUMOylation contributes to the regulation of many essential cellular factors. Diverse techniques have been used to explore the functional consequences of protein SUMOylation. Most approaches consider the identification of sequences on substrates, adaptors, or receptors regulating the SUMO conjugation, recognition, or deconjugation. The large majority of the studied SUMOylated proteins contain t...
متن کاملBiochemical characterization of PE_PGRS61 family protein of Mycobacterium tuberculosis H37Rv reveals the binding ability to fibronectin
Objective(s): The periodic binding of protein expressed by Mycobacterium tuberculosis H37Rv with the host cell receptor molecules i.e. fibronectin (Fn) is gaining significance because of its adhesive properties. The genome sequencing of M. tuberculosis H37Rv revealed that the proline-glutamic (PE) proteins contain polymorphic GC-rich repetitive sequences (PGRS) which have clinical importance i...
متن کاملIdentification of Sumoylated Proteins in the Silkworm Bombyx mori
Small ubiquitin-like modifier (SUMO) modification (SUMOylation) is an important and widely used reversible modification system in eukaryotic cells. It regulates various cell processes, including protein targeting, transcriptional regulation, signal transduction, and cell division. To understand its role in the model lepidoptera insect Bombyx mori, a recombinant baculovirus was constructed to ex...
متن کاملIn vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice.
SUMOylation, an essential posttranslational protein modification, is involved in many eukaryotic cellular signaling pathways. The identification of SUMOylated proteins is difficult, because SUMOylation sites in proteins are hard to predict, SUMOylated protein states are transient in vivo and labile in vitro, only a small substrate fraction is SUMOylated in vivo, and identification tools for nat...
متن کامل