Enzyme-Synthesized Highly Branched Maltodextrins Have Slow Glucose Generation at the Mucosal α-Glucosidase Level and Are Slowly Digestible In Vivo
نویسندگان
چکیده
For digestion of starch in humans, α-amylase first hydrolyzes starch molecules to produce α-limit dextrins, followed by complete hydrolysis to glucose by the mucosal α-glucosidases in the small intestine. It is known that α-1,6 linkages in starch are hydrolyzed at a lower rate than are α-1,4 linkages. Here, to create designed slowly digestible carbohydrates, the structure of waxy corn starch (WCS) was modified using a known branching enzyme alone (BE) and an in combination with β-amylase (BA) to increase further the α-1,6 branching ratio. The digestibility of the enzymatically synthesized products was investigated using α-amylase and four recombinant mammalian mucosal α-glucosidases. Enzyme-modified products (BE-WCS and BEBA-WCS) had increased percentage of α-1,6 linkages (WCS: 5.3%, BE-WCS: 7.1%, and BEBA-WCS: 12.9%), decreased weight-average molecular weight (WCS: 1.73×10(8) Da, BE-WCS: 2.76×10(5) Da, and BEBA-WCS 1.62×10(5) Da), and changes in linear chain distributions (WCS: 21.6, BE-WCS: 16.9, BEBA-WCS: 12.2 DPw). Hydrolysis by human pancreatic α-amylase resulted in an increase in the amount of branched α-limit dextrin from 26.8% (WCS) to 56.8% (BEBA-WCS). The α-amylolyzed samples were hydrolyzed by the individual α-glucosidases (100 U) and glucogenesis decreased with all as the branching ratio increased. This is the first report showing that hydrolysis rate of the mammalian mucosal α-glucosidases is limited by the amount of branched α-limit dextrin. When enzyme-treated materials were gavaged to rats, the level of postprandial blood glucose at 60 min from BEBA-WCS was significantly higher than for WCS or BE-WCS. Thus, highly branched glucan structures modified by BE and BA had a comparably slow digesting property both in vitro and in vivo. Such highly branched α-glucans show promise as a food ingredient to control postprandial glucose levels and to attain extended glucose release.
منابع مشابه
Modulation of starch digestion for slow glucose release through "toggling" of activities of mucosal α-glucosidases.
Starch digestion involves the breakdown by α-amylase to small linear and branched malto-oligosaccharides, which are in turn hydrolyzed to glucose by the mucosal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI). MGAM and SI are anchored to the small intestinal brush-border epithelial cells, and each contains a catalytic N- and C-terminal subunit. All four subunits have α-1...
متن کاملMolecular docking studies of some flavone analogues as α-Glucosidase inhibitors
Background: High Blood glucose levels is one of the main problems in diabetes. α-glucosidase with decomposition of polysaccharides increases the absorption of carbohydrates from the intestine, resulting in blood glucose upsurge. Inhibition of this enzyme is one of the most important strategies for treatment of diabetes. Objective: The aim of this study was to investigate in silico inhibitory ef...
متن کاملNutrition, Health, and Regulatory Aspects of Digestible Maltodextrins
Digestible maltodextrins are low-sweet saccharide polymers consisting of D-glucose units linked primarily linearly with alpha-1,4 bonds, but can also have a branched structure through alpha-1,6 bonds. Often, maltodextrins are classified by the amount of reducing sugars present relative to the total carbohydrate content; between 3 and 20 percent in the case of digestible maltodextrins. These rel...
متن کاملBIOINFORMATICS EVALUATION OF T.FOENUM ACTIVE COMPOUNDS IN SUPPRESSION OF Α-GLUCOSIDASE ENZYME
Background: Diabetes mellitus is a metabolic syndrome characterized by elevated blood glucose. The α-glucosidase enzymes that are found in the small intestine are responsible for the hydrolysis of carbohydrates. The aim of this study was to Bioinformatics evaluation of T.foenum active compounds in suppression of α-glucosidase enzyme. Methods: This study was a descriptive-analytical method. For...
متن کاملFlavonoids from Salvia chloroleuca with α-Amylsae and α-Glucosidase Inhibitory Effect
It is believed that the inhibition of carbohydrate hydrolyzing enzymes including α-amylase and α-glucosidase is one of the therapeutic approaches to decrease the postprandial glucose level after a meal, especially in the people with type 2 diabetes. Medicinal plants and their extracts are one of the main sources to find new inhibitors to the enzymes. In our study four flavonoids, namely luteoli...
متن کامل