Gaining IS Business Value through Big Data Analytics: A Case Study of the Energy Sector
نویسندگان
چکیده
Following decades of stability and comfortable margins, utility companies today face strong pressure from regulatory bodies and competitors. As a response to the market dynamics, many have initiated a transformation from a “provider” to a service company, yet realize that their customer insights that would be necessary to successfully develop and market new services are sparse. We argue that the required information is contained in consumption data that is available to utility companies. We demonstrate how data analytics and machine learning make sense out of such data and add value to organizations. Using datasets containing annual electricity consumption information of private households, we apply and test in field experiments a Support Vector Machines algorithm that predicts probabilities of individual costumers to sign up on an energy efficiency portal. We show that signup rates can be doubled and argue that classification tools provide customer insights at low cost and at scale.
منابع مشابه
A Fuzzy TOPSIS Approach for Big Data Analytics Platform Selection
Big data sizes are constantly increasing. Big data analytics is where advanced analytic techniques are applied on big data sets. Analytics based on large data samples reveals and leverages business change. The popularity of big data analytics platforms, which are often available as open-source, has not remained unnoticed by big companies. Google uses MapReduce for PageRank and inverted indexes....
متن کاملBig Data Analytics and Now-casting: A Comprehensive Model for Eventuality of Forecasting and Predictive Policies of Policy-making Institutions
The ability of now-casting and eventuality is the most crucial and vital achievement of big data analytics in the area of policy-making. To recognize the trends and to render a real image of the current condition and alarming immediate indicators, the significance and the specific positions of big data in policy-making are undeniable. Moreover, the requirement for policy-making institutions to ...
متن کاملMitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain
The use of big data analytics for forecasting business trends is gaining momentum among professionals. At the same time, supply chain risk management is important for practitioners to consider because it outlines ways through which firms can allay internal and external threats. Predicting and addressing the risks that social issues cause in the supply chain is of paramount importance to the sus...
متن کاملExamining Impacts of Big Data Analytics on Consumer Finance: a Case of China
The use of Big Data analytics for business improvements is a vital strategy for survival. In this paper, we report a study that investigates the role of BD analytics on consumer finance, credit card finance in China—a research area that has largely remained unexplored. The largeness and diversity of Chinese consumer market merit an urgent attention and understanding of role of BD analytics is s...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کامل