Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record
نویسنده
چکیده
The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006–2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud’s geographical position. Best results were achieved over oceanic surfaces at midto high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts with the highest altitudes over Greenland and Antarctica. It is suggested to quantify the detection performance of other CDRs in terms of a sensitivity threshold of cloud optical thickness, which can be estimated using active lidar observations. Validation results are proposed to be used in Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulation Package (COSP) simulators for cloud detection characterization of various cloud CDRs from passive imagery.
منابع مشابه
Impact of AVHRR Channel 3b Noise on Climate Data Records: Filtering Method Applied to the CM SAF CLARA-A2 Data Record
A method for reducing the impact of noise in the 3.7 micron spectral channel in climate data records derived from coarse resolution (4 km) global measurements from the Advanced Very High Resolution Radiometer (AVHRR) data is presented. A dynamic size-varying median filter is applied to measurements guided by measured noise levels and scene temperatures for individual AVHRR sensors on historic N...
متن کاملComparative Study on Cloud Parameter Estimation Among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI with Laser Radar: Lidar as Truth Data
A comparative study on cloud parameter estimation among GOSAT/CAI, MODIS, CALIPSO/CALIOP and Landsat-8/OLI is carried out using Laser Radar: Lidar as a truth data. Optical depth, size distribution, as well as cirrus type of clouds are cloud parameters. In particular, cirrus cloud detection is tough issue. 1.38 μm channel is required for its detection. Although MODIS and Landsat-8/OLI have such ...
متن کاملUsing the NASA EOS A-Train to Probe the Performance of the NOAA PATMOS-x Cloud Fraction CDR
An important component of the AVHRR PATMOS-x climate date record (CDR)—or any satellite cloud climatology—is the performance of its cloud detection scheme and the subsequent quality of its cloud fraction CDR. PATMOS-x employs the NOAA Enterprise Cloud Mask for this, which is based on a naïve Bayesian approach. The goal of this paper is to generate analysis of the PATMOS-x cloud fraction CDR to ...
متن کاملComparison of Two Different Cloud Climatologies Derived from CALIOP-Attenuated Backscattered Measurements (Level 1): The CALIPSO-ST and the CALIPSO-GOCCP
Two different cloud climatologies have been derived from the same NASA–Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)-measured attenuated backscattered profile (level 1, version 3 dataset). The first climatology, named Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations–Science Team (CALIPSO-ST), is based on the standard CALIOP cloud mask (level 2 product, version 3), ...
متن کاملAttribute-based Access Control for Cloud-based Electronic Health Record (EHR) Systems
Electronic health record (EHR) system facilitates integrating patients' medical information and improves service productivity. However, user access to patient data in a privacy-preserving manner is still challenging problem. Many studies concerned with security and privacy in EHR systems. Rezaeibagha and Mu [1] have proposed a hybrid architecture for privacy-preserving accessing patient records...
متن کامل