High-Throughput Random Access via Codes on Graphs

نویسندگان

  • Gianluigi Liva
  • Enrico Paolini
  • Marco Chiani
چکیده

Recently, contention resolution diversity slotted ALOHA (CRDSA) has been introduced as a simple but effective improvement to slotted ALOHA. It relies on MAC burst repetitions and on interference cancellation to increase the normalized throughput of a classic slotted ALOHA access scheme. CRDSA allows achieving a larger throughput than slotted ALOHA, at the price of an increased average transmitted power. A way to trade-off the increment of the average transmitted power and the improvement of the throughput is presented in this paper. Specifically, it is proposed to divide each MAC burst in k subbursts, and to encode them via a (n, k) erasure correcting code. The n encoded sub-bursts are transmitted over the MAC channel, according to specific time/frequency-hopping patterns. Whenever n − e ≥ k sub-bursts (of the same burst) are received without collisions, erasure decoding allows recovering the remaining e sub-bursts (which were lost due to collisions). An interference cancellation process can then take place, removing in e slots the interference caused by the e recovered sub-bursts, possibly allowing the correct decoding of sub-bursts related to other bursts. The process is thus iterated as for the CRDSA case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Make random access contentions transparent by orthogonal complementary codes in wireless communications

Transparent contention means that receivers and/or transmitters know the random access contention before data packet transmissions. With transparent contention, channel access can be scheduled to avoid packet collisions. More important, packet priority and QoS can be conveniently managed. This paper proposes new methods which make contention transparent in random access wireless networks. Packe...

متن کامل

Large Random Access Systems with Retransmission Diversity

We consider that infinitely many users randomly access a basestation through a common channel of infinitely wide bandwidth with the number of users per dimension kept a constant. Retransmission diversity gain for demodulation of a transmitted packet is acquired via jointly using signals collected from multiple retransmissions of the packet. All users’ channel profiles are considered in packet s...

متن کامل

Achieving target throughputs in random-access networks

Random-access algorithms such as CSMA provide a popular mechanism for distributed medium access control in large-scale wireless networks. In recent years, tractable stochastic models have been shown to yield accurate throughput estimates for CSMA networks. We consider a saturated random-access network on a general conflict graph, and prove that for every feasible combination of throughputs, the...

متن کامل

Performance of CDMA random access systems with packet combining in fading channels

We analyze the system performance of code-division multiple-access (CDMA) random access systems with linear receivers and packet combing in multipath fading channels. Both slotted and unslotted CDMA systems with random spreading codes are considered. The analysis is based on large systems in which both the offered load and the processing gain tend to infinity but their ratio is fixed. It is rel...

متن کامل

Network Throughput Optimization via Error Correcting Codes

A new network construction method is presented for building of scalable, high throughput, low latency networks. The method is based on the exact equivalence discovered between the problem of maximizing network throughput (measured as bisection bandwidth) for a large class of practically interesting Cayley graphs and the problem of maximizing codeword distance for linear error correcting codes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010