Evidence for plateau potentials in tail motoneurons of awake chronic spinal rats with spasticity.
نویسندگان
چکیده
Motor units of segmental tail muscles were recorded in awake rats following acute (1-2 days) and chronic (>30 days) sacral spinal cord transection to determine whether plateau potentials contributed to sustained motor-unit discharges after injury. This study was motivated by a companion in vitro study that indicated that after chronic spinal cord injury, the tail motoneurons of the sacrocaudal spinal cord exhibit persistent inward currents (I(PIC)) that cause intrinsically sustained depolarizations (plateau potentials) and firing (self-sustained firing). Importantly, in this companion study, the plateaus were fully activated at recruitment and subsequently helped sustain the firing without causing abrupt nonlinearities in firing. That is, after recruitment and plateau activation, the firing rate was modulated relatively linearly with injected current and therefore provided a good approximation of the input to the motoneuron despite the plateau. Thus in the present study, pairs of motor units were recorded simultaneously from the same muscle, and the firing rate (F) of the lowest-threshold unit (control unit) was used as an estimate of the synaptic input to both units. We then examined whether firing of the higher-threshold unit (test unit) was intrinsically maintained by a plateau, by determining whether more synaptic input was required to recruit the test unit than to maintain its firing. The difference in the estimated synaptic input at recruitment and de-recruitment of the test unit (i.e., change in control unit rate, DeltaF) was taken as an estimate of the plateau current (I(PIC)) that intrinsically sustained the firing. Slowly graded manual skin stimulation was used to recruit and then de-recruit the units. The test unit was recruited when the control unit rate was on average 17.8 and 18.9 Hz in acute and chronic spinal rats, respectively. In chronic spinal rats, the test unit was de-recruited when the control unit rate (re: estimated synaptic input) was significantly reduced, compared with at recruitment (DeltaF = -5.5 Hz), and thus a plateau participated in maintaining the firing. In the lowest-threshold motor units, even a brief stimulation triggered very long-lasting firing (seconds to hours; self-sustained firing). Higher-threshold units required continuous stimulation (or a spontaneous spasm) to cause firing, but again more synaptic input was needed to recruit the unit than to maintain its firing (i.e., plateau present). In contrast, in acute spinal rats, the stimulation did not usually trigger sustained motor-unit firing that could be attributed to plateaus because DeltaF was not significantly different from zero. These results indicate that plateaus play an important role in sustaining motor-unit firing in awake chronic spinal rats and thus contribute to the hyperreflexia and hypertonus associated with chronic injury.
منابع مشابه
Plateau potentials in sacrocaudal motoneurons of chronic spinal rats, recorded in vitro.
Intracellular recordings were made from sacrocaudal tail motoneurons of acute and chronic spinal rats to examine whether plateau potentials contribute to spasticity associated with chronic injury. The spinal cord was transected at the S2 level, causing, over time, exaggerated long-lasting reflexes (hyperreflexia) associated with a general spasticity syndrome in the tail muscles of chronic spina...
متن کاملPersistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats.
After chronic spinal cord injury motoneurons exhibit large plateau potentials (sustained depolarizations triggered by brief inputs) that play a primary role in the development of muscle spasms and spasticity (Bennett et al. 2001a,b). The present study examined the voltage-gated persistent inward currents (PICs) underlying these plateaus. Adult rats were spinalized at the S2 sacral spinal level ...
متن کاملSpastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
Following chronic sacral spinal cord transection in rats the affected tail muscles exhibit marked spasticity, with characteristic long-lasting tail spasms evoked by mild stimulation. The purpose of the present paper was to characterize the long-lasting reflex seen in tail muscles in response to electrical stimulation of the tail nerves in the awake spastic rat, including its development with ti...
متن کاملRole of persistent sodium and calcium currents in motoneuron firing and spasticity in chronic spinal rats.
After chronic spinal injury, motoneurons spontaneously develop two persistent inward currents (PICs): a TTX-sensitive persistent sodium current (sodium PIC) and a nimodipine-sensitive persistent calcium current (calcium PIC). In the present paper, we examined how these PICs contributed to motoneuron firing. Adult rats were spinalized at the S(2) sacral level, and after 2 months intracellular re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 86 4 شماره
صفحات -
تاریخ انتشار 2001