Identification and Characterization of Five BAHD Acyltransferases Involved in Hydroxycinnamoyl Ester Metabolism in Chicory
نویسندگان
چکیده
Chicory (Cichorium intybus) accumulates caffeic acid esters with important significance for human health. In this study, we aim at a better understanding of the biochemical pathway of these bioactive compounds. Detailed metabolic analysis reveals that C. intybus predominantly accumulates caftaric and chicoric acids in leaves, whereas isochlorogenic acid (3,5-diCQA) was almost exclusively accumulated in roots. Chlorogenic acid (3-CQA) was equally distributed in all organs. Interestingly, distribution of the four compounds was related to leaf age. Induction with methyljasmonate (MeJA) of root cell suspension cultures results in an increase of 3-CQA and 3,5-diCQA contents. Expressed sequence tag libraries were screened using members of the BAHD family identified in Arabidopsis and tobacco as baits. The full-length cDNAs of five genes were isolated. Predicted amino acid sequence analyses revealed typical features of BAHD family members. Biochemical characterization of the recombinant proteins expressed in Escherichia coli showed that two genes encode HCTs (hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferases, HCT1 and HCT2) whereas, three genes encode HQTs (hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferases, HQT1, HQT2, and HQT3). These results totally agreed with the phylogenetic analysis done with the predicted amino acid sequences. Quantitative real-time polymerase chain reaction analysis of gene expression indicated that HQT3, HCT1, and HCT2 might be more directly associated with CQA accumulation in cell culture in response to MeJA elicitation. Transient expression of HCT1 and HQT1 in tobacco resulted in a higher production of 3-CQA. All together these data confirm the involvement of functionally redundant genes in 3-CQA and related compound synthesis in the Asteraceae family.
منابع مشابه
Genome-Wide Identification of BAHD Acyltransferases and In vivo Characterization of HQT-like Enzymes Involved in Caffeoylquinic Acid Synthesis in Globe Artichoke
Globe artichoke (Cynara cardunculus L. var. scolymus) is a rich source of compounds promoting human health (phytonutrients), among them caffeoylquinic acids (CQAs), mainly represented by chlorogenic acid (CGA), and dicaffeoylquinic acids (diCQAs). The enzymes involved in their biosynthesis belong to the large family of BAHD acyltransferases. Following a survey of the globe artichoke genome, we ...
متن کاملEvolutionarily Distinct BAHD N-Acyltransferases Are Responsible for Natural Variation of Aromatic Amine Conjugates in Rice.
Phenolamides (PAs) are specialized (secondary) metabolites mainly synthesized by BAHD N-acyltransferases. Here, we report metabolic profiling coupled with association and linkage mapping of 11 PAs in rice (Oryza sativa). We identified 22 loci affecting PAs in leaves and 16 loci affecting PAs in seeds. We identified eight BAHD N-acyltransferases located on five chromosomes with diverse specifici...
متن کاملExploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast
BACKGROUND BAHD acyltransferases, named after the first four biochemically characterized enzymes of the group, are plant-specific enzymes that catalyze the transfer of coenzyme A-activated donors onto various acceptor molecules. They are responsible for the synthesis in plants of a myriad of secondary metabolites, some of which are beneficial for humans either as therapeutics or as specialty ch...
متن کاملAcyltransferases in plants: a good time to be BAHD.
Acylation is a common and biochemically significant modification of plant secondary metabolites. Plant BAHD acyltransferases constitute a large family of acyl CoA-utilizing enzymes whose products include small volatile esters, modified anthocyanins, as well as constitutive defense compounds and phytoalexins. The catalytic versatility of BAHD enzymes makes it very difficult to make functional pr...
متن کاملCaffeoylquinic Acids Biosynthesis and Accumulation in Cynara cardunculus: State of the Art
Plant secondary metabolites are highly evolved compounds performing different functions, and have been widely exploited from food to medicine. A constant supply of phenols, a class of secondary metabolites, provides preventive and defensive mechanisms to reduce the risk of chronic diseases in human beings; among them monoand di-caffeoylquinic acids (monoCQAs, diCQAs) have attracted a growing ac...
متن کامل