A novel QSPR model for predicting θ (lower critical solution temperature) in polymer solutions using molecular descriptors.

نویسندگان

  • Georgia Melagraki
  • Antreas Afantitis
  • Haralambos Sarimveis
  • Panayiotis A Koutentis
  • John Markopoulos
  • Olga Igglessi-Markopoulou
چکیده

In this study, we present a new model that has been developed for the prediction of θ (lower critical solution temperature) using a database of 169 data points that include 12 polymers and 67 solvents. For the characterization of polymer and solvent molecules, a number of molecular descriptors (topological, physicochemical,steric and electronic) were examined. The best subset of descriptors was selected using the elimination selection-stepwise regression method. Multiple linear regression (MLR) served as the statistical tool to explore the potential correlation among the molecular descriptors and the experimental data. The prediction accuracy of the MLR model was tested using the leave-one-out cross validation procedure, validation through an external test set and the Y-randomization evaluation technique. The domain of applicability was finally determined to identify the reliable predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Modeling for Prediction of Critical Temperature of Refrigerant Compounds

The quantitative structure-property relationship (QSPR) method is used to develop the correlation between structures of refrigerants (198 compounds) and their critical temperature. Molecular descriptors calculated from structure alone were used to represent molecular structures. A subset of the calculated descriptors selected using a genetic algorithm (GA) was used in the QSPR model development...

متن کامل

Determination of critical properties of Alkanes derivatives using multiple linear regression

This study presents some mathematical methods for estimating the critical properties of 40 different types of alkanes and their derivatives including critical temperature, critical pressure and critical volume. This algorithm used QSPR modeling based on graph theory, several structural indices, and geometric descriptors of chemical compounds. Multiple linear regression was used to estimate the ...

متن کامل

A New Accurate Neural Network Quantitative Structure- Property Relationship for Prediction of θ (Lower Critical Solution Temperature) of Polymer Solutions

In this study, a new neural network quantitative structure-property relationship model for prediction of ) (LCST θ of polymer solutions is presented. The parameters of this model are eight molecular descriptors which are calculated only from the chemical structure of polymer and solvent. These eight molecular descriptors were selected from 3328 molecular descriptors of polymer and solvent avail...

متن کامل

QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR

Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...

متن کامل

A Novel Molecular Descriptor Derived from Weighted Line Graph

The Bertz indices, derived by counting the number of connecting edges of line graphs of a molecule were used in deriving the QSPR models for the physicochemical properties of alkanes. The inability of these indices to identify the hetero centre in a chemical compound restricted their applications to hydrocarbons only. In the present work, a novel molecular descriptor has been derived from the w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular modeling

دوره 13 1  شماره 

صفحات  -

تاریخ انتشار 2007