Active contribution of dendrites to the tonic and trimodal patterns of activity in cerebellar Purkinje neurons.

نویسندگان

  • Mary Womack
  • Kamran Khodakhah
چکیده

The cerebellum is responsible for coordination of movement and maintenance of balance. Cerebellar architecture is based on repeats of an anatomically well defined circuit. At the center of these functional circuits are Purkinje neurons, which form the sole output of the cerebellar cortex. It is proposed that coordination of movement is achieved by encoding timing signals in the rate of firing and pattern of activity of Purkinje cells. An understanding of cerebellar timing requires an appreciation of the intrinsic firing behavior of Purkinje cells and the extent to which their activity is regulated within the functional circuits. We have examined the spontaneous firing of Purkinje neurons in isolation from the rest of the cerebellar circuitry by blocking fast synaptic transmission in acutely prepared cerebellar slices. We find that, intrinsically, mature Purkinje cells show a complex pattern of activity in which they continuously cycle among tonically firing, bursting, and silent modes. This trimodal pattern of activity emerges as the cerebellum matures anatomically and functionally. Concurrent with the transformation of the immature tonically firing cells to those with the trimodal pattern of activity, the dendrites assume a prominent role in regulating the excitability of Purkinje cells. Thus, alterations in the rate and pattern of activity of Purkinje neurons are not solely the result of synaptic input but also arise as a consequence of the intrinsic properties of the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic ...

متن کامل

Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate  f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...

متن کامل

Power Spectral Density Analysis of Purkinje Cell Tonic and Burst Firing Patterns From a Rat Model of Ataxia and Riluzole Treated

Introduction: Purkinje Cell (PC) output displays a complex firing pattern consisting of high frequency sodium spikes and low frequency calcium spikes, and disruption in this firing behavior may contribute to cerebellar ataxia. Riluzole, neuroprotective agent, has been demonstrated to have neuroprotective effects in cerebellar ataxia. Here, the spectral analysis of PCs firing in control, 3-acety...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

An inward current induced by a putative cyclic nucleotide-gated channel in rat cerebellar Purkinje neurons

The roles of cyclic nucleotide-gated (CNG) channels in sensory transduction have long been recognized. More recent studies found that CNG channels are distributed in multiple brain regions involved in memory and learning, including the cortex, hippocampus and cerebellum. These findings suggest that their functions are not limited to sensory perception, but also to neuronal plasticity phenomena,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 24  شماره 

صفحات  -

تاریخ انتشار 2002