Efficient Content-based Image Retrieval Using Weighted Feature Aggregation Scheme

نویسندگان

  • Ivica Dimitrovski
  • Blagojce Jankulovski
  • Suzana Loskovska
چکیده

This paper presents a content-based image retrieval system for aggregation and combination of different image features. Feature aggregation is important technique in general content-based image retrieval systems that employ multiple visual features to characterize image content. We introduced and evaluated linear combination to fuse different features. The most important step in the feature aggregation is to find suitable weights for the individual features. We have used relevance feedback techniques to determine the salient features and to learn weights for each feature. The weights are used in linear combination scheme that we call weighted feature aggregation. The implemented system has several advantages over the existing content-based image retrieval systems. Several implemented features included in our system allow the user to adapt the system to the query image. The weighted combination of features allows flexible query formulations and helps processing specific queries for which users have no knowledge about any suitable descriptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram

Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a  database. In medical applications, CBIR is a tool used by physicians to compare the previous and current  medical images associated with patients pathological conditions. As the volume of pictorial information  stored in medical image databases is in progress, efficient image indexing and retri...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Multimodal Weighted Color Histogram based Content based Image Retrieval

Image retrieval has been one of the most important and vivid research areas in the field of computer vision over the last decades. Though many techniques have been proposed and studied for effective image retrieval, the retrieval efficiency of content based image retrieval system is still affected by the background influence of objects in images, complexity of feature vector and sensitivity to ...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009